Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 22(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393024

RESUMEN

Based on the results of our own preliminary studies, the derivative of the marine alkaloid fascaplysin containing a phenyl substituent at C-9 was selected to evaluate the therapeutic potential in vivo and in vitro. It was shown that this compound has outstandingly high antimicrobial activity against Gram-positive bacteria, including antibiotic-resistant strains in vitro. The presence of a substituent at C-9 of the framework is of fundamental importance, since its replacement to neighboring positions leads to a sharp decrease in the selectivity of the antibacterial action, which indicates the presence of a specific therapeutic target in bacterial cells. On a model of the acute bacterial sepsis in mice, it was shown that the lead compound was more effective than the reference antibiotic vancomycin seven out of nine times. However, ED50 value for 9-phenylfascaplysin (7) was similar for the unsubstituted fascaplysin (1) in vivo, despite the former being significantly more active than the latter in vitro. Similarly, assessments of the anticancer activity of compound 7 against various variants of Ehrlich carcinoma in mice demonstrated its substantial efficacy. To conduct a structure-activity relationship (SAR) analysis and searches of new candidate compounds, we synthesized a series of analogs of 9-phenylfascaplysin with varying aryl substituents. However, these modifications led to the reduced aqueous solubility of fascaplysin derivatives or caused a loss of their antibacterial activity. As a result, further research is required to explore new avenues for enhancing its pharmacokinetic characteristics, the modification of the heterocyclic framework, and optimizing of treatment regimens to harness the remarkable antimicrobial potential of fascaplysin for practical usage.


Asunto(s)
Antibacterianos , Antiinfecciosos , Carbolinas , Indolizinas , Compuestos de Amonio Cuaternario , Animales , Ratones , Antibacterianos/farmacología , Relación Estructura-Actividad , Indoles , Pruebas de Sensibilidad Microbiana
2.
Biomed Pharmacother ; 168: 115743, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37862974

RESUMEN

Diabetes mellitus is a serious threat to human health in both developed and developing countries. Optimal disease control requires the use of a diet and a combination of several medications, including oral hypoglycemic agents such as α-glucosidase inhibitors. Currently, the arsenal of available drugs is insufficient, which determines the relevance of studying new potent α-amylase inhibitors. We implemented the recombinant production of sea anemone derived α-amylase inhibitor magnificamide in Escherichia coli. Peptide was isolated by a combination of liquid chromatography techniques. Its folding and molecular weight was proved by 1H NMR and mass spectrometry. The Ki value of magnificamide against human pancreatic α-amylase is 3.1 nM according to Morrison equation for tight binding inhibitors. Our study of the thermodynamic characteristics of binding of magnificamide to human salivary and pancreatic α-amylases by isothermal titration calorimetry showed the presence of different binding mechanisms with Kd equal to 0.11 µM and 0.1 nM, respectively. Experiments in mice with streptozotocin-induced diabetes mimicking diabetes mellitus type 1 were used to study the efficiency of magnificamide against postprandial hyperglycemia. It was found that at a dose of 0.005 mg kg-1, magnificamide effectively blocks starch breakdown and prevents the development of postprandial hyperglycemia in T1D mice. Our results demonstrated the therapeutic potential of magnificamide for the control of postprandial hyperglycemia.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hiperglucemia , Anémonas de Mar , Ratones , Humanos , Animales , Glucemia/metabolismo , Anémonas de Mar/metabolismo , alfa-Amilasas , Hiperglucemia/tratamiento farmacológico , Inhibidores de Glicósido Hidrolasas , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Moco/metabolismo , Administración Oral , alfa-Glucosidasas/metabolismo , Hipoglucemiantes/efectos adversos
3.
Mar Drugs ; 21(9)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37755083

RESUMEN

The carotenoids mixture (MC) isolated from the starfish Patiria. pectinifera contains more than 50% astaxanthin, 4-6% each zeaxanthine and lutein, and less pharmacologically active components such as free fatty acids and their glycerides. Astaxanthin, the major component of MC, belongs to the xanthophyll class of carotenoids, and is well known for its antioxidant properties. In this work, in vitro and in vivo studies on the biological activity of MC were carried out. The complex was shown to exhibit anti-inflammatory, anti-allergic and cancer-preventive activity, without any toxicity at a dose of 500 mg/kg. MC effectively improves the clinical picture of the disease progressing, as well as normalizing the cytokine profile and the antioxidant defense system in the in vivo animal models of inflammatory diseases, namely: skin carcinogenesis, allergic contact dermatitis (ACD) and systemic inflammation (SI). In the skin carcinogenesis induced by 7,12-dimethylbenzanthracene, the incidence of papillomas was decreased 1.5 times; 1% MC ointment form in allergic contact dermatitis showed an 80% reduced severity of pathomorphological skin manifestations. Obtained results show that MC from starfish P. pectinifera is an effective remedy for the treatment and prevention of inflammatory processes.


Asunto(s)
Antialérgicos , Dermatitis Alérgica por Contacto , Animales , Estrellas de Mar , Carotenoides/farmacología , Carotenoides/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Luteína , Carcinogénesis
4.
Toxins (Basel) ; 15(5)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37235375

RESUMEN

Acid-sensing ion channels (ASICs) have been known as sensors of a local pH change within both physiological and pathological conditions. ASIC-targeting peptide toxins could be potent molecular tools for ASIC-manipulating in vitro, and for pathology treatment in animal test studies. Two sea anemone toxins, native Hmg 1b-2 and recombinant Hmg 1b-4, both related to APETx-like peptides, inhibited the transient current component of human ASIC3-Δ20 expressed in Xenopus laevis oocytes, but only Hmg 1b-2 inhibited the rat ASIC3 transient current. The Hmg 1b-4 action on rASIC3 as a potentiator was confirmed once again. Both peptides are non-toxic molecules for rodents. In open field and elevated plus maze tests, Hmg 1b-2 had more of an excitatory effect and Hmg 1b-4 had more of an anxiolytic effect on mouse behavior. The analgesic activity of peptides was similar and comparable to diclofenac activity in an acid-induced muscle pain model. In models of acute local inflammation induced by λ-carrageenan or complete Freund's adjuvant, Hmg 1b-4 had more pronounced and statistically significant anti-inflammatory effects than Hmg 1b-2. It exceeded the effect of diclofenac and, at a dose of 0.1 mg/kg, reduced the volume of the paw almost to the initial volume. Our data highlight the importance of a comprehensive study of novel ASIC-targeting ligands, and in particular, peptide toxins, and present the slightly different biological activity of the two similar toxins.


Asunto(s)
Ansiolíticos , Proteína HMGB3 , Anémonas de Mar , Toxinas Biológicas , Ratas , Ratones , Humanos , Animales , Ansiolíticos/farmacología , Anémonas de Mar/química , Diclofenaco , Proteína HMGB2 , Péptidos/farmacología , Analgésicos/farmacología , Analgésicos/uso terapéutico , Toxinas Biológicas/farmacología , Factores de Transcripción , Roedores , Antiinflamatorios/farmacología
5.
Biomolecules ; 12(11)2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36421718

RESUMEN

A novel peptide AnmTX Sco 9a-1 with the ß-hairpin fold was isolated from the swimming sea anemone Stomphia coccinea (Actinostolidae family). The peptide consists of 28 amino acid residues, including modified hydroxyproline residue, and its measured molecular mass is 2960 Da. The peptide was not toxic on mice; however, it stimulated their exploratory motivation and active search behavior, and demonstrated an anti-anxiety effect. AnmTX Sco 9a-1 at doses of 0.1 and 1 mg/kg reduced the volume of edema during 24 h better than the nonsteroidal anti-inflammatory drug, Diclofenac, at dose of 1 mg/kg in a model of acute local λ-carrageenan-induced inflammation. ELISA analysis of the animal's blood showed that peptide at a dose of 1 mg/kg reduced the content of tumor necrosis factor-α (TNF-α), a pro-inflammatory mediator responsible in the edema development, up to the level of TNF-α in the intact group. Besides, AnmTX Sco 9a-1 demonstrated a significant analgesic effect on acute pain sensitivity in the carrageenan-induced thermal hyperalgesia model at doses of 0.1 and 1 mg/kg. Activity of AnmTX Sco 9a-1 was shown not to be associated with modulation of nociceptive ASIC channels.


Asunto(s)
Péptidos , Anémonas de Mar , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Edema/inducido químicamente , Edema/tratamiento farmacológico , Péptidos/química , Anémonas de Mar/química , Factor de Necrosis Tumoral alfa
6.
Molecules ; 27(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35163891

RESUMEN

Ginsenoside Rh2 increases the efficacy of doxorubicin (DOX) treatment in murine models of solid and ascites Ehrlich's adenocarcinoma. In a solid tumor model (treatment commencing 7 days after inoculation), DOX + Rh2 co-treatment was significantly more efficacious than DOX alone. If treatment was started 24 h after inoculation, the inhibition of tumor growth of a solid tumor for the DOX + Rh2 co-treatment group was complete. Furthermore, survival in the ascites model was dramatically higher for the DOX + Rh2 co-treatment group than for DOX alone. Mechanisms underlying the combined DOX and Rh2 effects were studied in primary Ehrlich's adenocarcinoma-derived cells and healthy mice's splenocytes. Despite the previously established Rh2 pro-oxidant activity, DOX + Rh2 co-treatment revealed no increase in ROS compared to DOX treatment alone. However, DOX + Rh2 treatment was more effective in suppressing Ehrlich adenocarcinoma cell adhesion than either treatment alone. We hypothesize that the benefits of DOX + Rh2 combination treatment are due to the suppression of tumor cell attachment/invasion that might be effective in preventing metastatic spread of tumor cells. Ginsenoside Rh2 was found to be a modest activator in a Neh2-luc reporter assay, suggesting that Rh2 can activate the Nrf2-driven antioxidant program. Rh2-induced direct activation of Nrf2 might provide additional benefits by minimizing DOX toxicity towards non-cancerous cells.


Asunto(s)
Adenocarcinoma , Medicamentos Herbarios Chinos , Ginsenósidos , Animales , Doxorrubicina/farmacología , Medicamentos Herbarios Chinos/farmacología , Ginsenósidos/farmacología , Ratones
7.
Biomedicines ; 9(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201624

RESUMEN

Currently the TRPV1 (transient receptor potential vanilloid type 1) channel is considered to be one of the main targets for pro-inflammatory mediators including TNF-α. Similarly, the inhibition of TRPV1 activity in the peripheral nervous system affects pro-inflammatory mediator production and enhances analgesia in total. In this study, the analgesic and anti-inflammatory effects of HCRG21, the first peptide blocker of TRPV1, were demonstrated in a mice model of carrageenan-induced paw edema. HCRG21 in doses of 0.1 and 1 mg/kg inhibited edema formation compared to the control, demonstrated complete edema disappearance in 24 h in a dose of 1 mg/kg, and effectively reduced the productionof TNF-α in both doses examined. ELISA analysis of blood taken 24 h after carrageenan administration showed a dramatic cytokine value decrease to 25 pg/mL by HCRG21 versus 100 pg/mL in the negative control group, which was less than the TNF-α level in the intact group (40 pg/mL). The HCRG21 demonstrated potent analgesic effects on the models of mechanical and thermal hyperalgesia in carrageenan-induced paw edema. The HCRG21 relief effect was comparable to that of indomethacin taken orally in a dose of 5 mg/kg, but was superior to this nonsteroidal anti-inflammatory drug (NSAID) in duration (which lasted 24 h) in the mechanical sensitivity experiment. The results confirm the existence of a close relationship between TRPV1 activity and TNF-α production once again, and prove the superior pharmacological potential of TRPV1 blockers and the HCRG21 peptide in particular.

8.
Biomedicines ; 8(11)2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158163

RESUMEN

The Kunitz/BPTI peptide family includes unique representatives demonstrating various biological activities. Electrophysiological screening of peptides HCRG1 and HCRG2 from the sea anemone Heteractis crispa on six Kv1.x channel isoforms and insect Shaker IR channel expressed in Xenopus laevis oocytes revealed their potassium channels blocking activity. HCRG1 and HCRG2 appear to be the first Kunitz-type peptides from sea anemones blocking Kv1.3 with IC50 of 40.7 and 29.7 nM, respectively. In addition, peptides mainly vary in binding affinity to the Kv1.2 channels. It was established that the single substitution, Ser5Leu, in the TRPV1 channel antagonist, HCRG21, induces weak blocking activity of Kv1.1, Kv1.2, and Kv1.3. Apparently, for the affinity and selectivity of Kunitz-fold toxins to Kv1.x isoforms, the number and distribution along their molecules of charged, hydrophobic, and polar uncharged residues, as well as the nature of the channel residue at position 379 (Tyr, Val or His) are important. Testing the compounds in a model of acute local inflammation induced by the introduction of carrageenan administration into mice paws revealed that HCRG1 at doses of 0.1-1 mg/kg reduced the volume of developing edema during 24 h, similar to the effect of the nonsteroidal anti-inflammatory drug, indomethacin, at a dose of 5 mg/kg. ELISA analysis of the animals blood showed that the peptide reduced the synthesis of TNF-α, a pro-inflammatory mediator playing a leading role in the development of edema in this model.

9.
Int J Mol Med ; 46(4): 1335-1346, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32945360

RESUMEN

Mostotrin (MT), a novel compound, at least five orders of magnitude more soluble in water than its mother substance, was designed and synthesised from tryptanthrin (TR). Its structure was established by nuclear magnetic resonance and mass spectrometry data and confirmed by X­ray analysis, revealing that MT is a pentacyclic product with an additional pseudo­cycle formed with the participation of one intramolecular hydrogen bond. Antimicrobial activity and cytotoxic action against tumour cells in vitro, as well as anti­tumour effects, acute toxicity and anti­inflammatory activities in vivo, were evaluated. Antimicrobial properties of MT against Mycobacterium spp and Bacillus cereus ATCC 10702 appeared to be the same as that of TR, but against the other strains used it was weaker. Furthermore, MT exhibited 5­10 times higher cytotoxic activities against tumour cell lines HCT­116, МСF­7 and K­562 than TR, but was less toxic than TR (LD50 of MT was 375 mg/kg, while LD50 for TR was 75 mg/kg). Additionally, compounds MT and TR were studied in DNA binding tests. The quenching of its fluorescence on addition to DNA solution established MT to be capable of binding to DNA. Its anti­tumour action in vivo on mice with the ascitic form of Ehrlich carcinoma was promising, particularly with joint application of MT and the antitumour drug doxorubicin. In this model, the survival and life span for the doxorubicin and 1 co­treatment group were significantly higher compared to doxorubicin treatment alone. The compound MT showed a lower immunosuppressive effect than TR at the early stages of inflammation induced in mice by LPS from E. Ñoli (MT hardly inhibited the release of IL­1, IL­2, or INF­Î³). These results demonstrated that MT is a perspective hit compound for drug development. In our opinion, further evaluation on the biological effects of MT and its synthetic analogues could lead to safer and more effective anti­tumour and anti­tuberculosis agents than TR itself. MT has also the prospect of application in combination with known anti­tumour drugs for the treatment of oncological diseases.


Asunto(s)
Antiinfecciosos/síntesis química , Antineoplásicos/síntesis química , Quinazolinas/química , Agua/química , Animales , Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Doxorrubicina/farmacología , Femenino , Células HCT116 , Humanos , Células K562 , Células MCF-7 , Melanoma Experimental/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Relación Estructura-Actividad
10.
Exp Ther Med ; 13(5): 1651-1659, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28565749

RESUMEN

The present review analyzed the recent experimental studies of the alleviating activity of main constituents of the polyphenol complex from seagrasses of the genus Zostera, namely rosmarinic acid, luteolin and its sulfated derivatives, on carbohydrate and lipid metabolism disorders. A number of studies by our group and others, in which various experimental models of diabetes and hyperlipidemia were used, show a therapeutic action of the polyphenol complex and the abovementioned phenolic constituents, when applied separately and in combination. Based on the analysis of the results of these studies, the probable mechanisms of the therapeutic action of these compounds in diabetes and hyperlipidemia were proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...