Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 35(11): 1006-1017, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35852471

RESUMEN

Legumes acquire access to atmospheric nitrogen through nitrogen fixation by rhizobia in root nodules. Rhizobia are soil-dwelling bacteria and there is a tremendous diversity of rhizobial species in different habitats. From the legume perspective, host range is a compromise between the ability to colonize new habitats, in which the preferred symbiotic partner may be absent, and guarding against infection by suboptimal nitrogen fixers. Here, we investigate natural variation in rhizobial host range across Lotus species. We find that Lotus burttii is considerably more promiscuous than Lotus japonicus, represented by the Gifu accession, in its interactions with rhizobia. This promiscuity allows Lotus burttii to form nodules with Mesorhizobium, Rhizobium, Sinorhizobium, Bradyrhizobium, and Allorhizobium species that represent five distinct genera. Using recombinant inbred lines, we have mapped the Gifu/burttii promiscuity quantitative trait loci (QTL) to the same genetic locus regardless of rhizobial genus, suggesting a general genetic mechanism for symbiont-range expansion. The Gifu/burttii QTL now provides an opportunity for genetic and mechanistic understanding of promiscuous legume-rhizobia interactions. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Bradyrhizobium , Lotus , Mesorhizobium , Rhizobium , Lotus/genética , Lotus/microbiología , Rhizobium/genética , Mesorhizobium/genética , Bradyrhizobium/genética , Nitrógeno
2.
Elife ; 62017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28726631

RESUMEN

Arbuscular mycorrhiza (AM) symbioses contribute to global carbon cycles as plant hosts divert up to 20% of photosynthate to the obligate biotrophic fungi. Previous studies suggested carbohydrates as the only form of carbon transferred to the fungi. However, de novo fatty acid (FA) synthesis has not been observed in AM fungi in absence of the plant. In a forward genetic approach, we identified two Lotus japonicus mutants defective in AM-specific paralogs of lipid biosynthesis genes (KASI and GPAT6). These mutants perturb fungal development and accumulation of emblematic fungal 16:1ω5 FAs. Using isotopolog profiling we demonstrate that 13C patterns of fungal FAs recapitulate those of wild-type hosts, indicating cross-kingdom lipid transfer from plants to fungi. This transfer of labelled FAs was not observed for the AM-specific lipid biosynthesis mutants. Thus, growth and development of beneficial AM fungi is not only fueled by sugars but depends on lipid transfer from plant hosts.


Asunto(s)
Ácidos Grasos/análisis , Metabolismo de los Lípidos , Lotus/metabolismo , Lotus/microbiología , Micorrizas/crecimiento & desarrollo , Micorrizas/metabolismo , Transporte Biológico , Isótopos de Carbono/análisis , Marcaje Isotópico , Micorrizas/química , Simbiosis
4.
Curr Biol ; 26(8): 987-98, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-27020747

RESUMEN

Intracellular arbuscular mycorrhiza symbiosis between plants and glomeromycotan fungi leads to formation of highly branched fungal arbuscules that release mineral nutrients to the plant host. Their development is regulated in plants by a mechanistically unresolved interplay between symbiosis, nutrient, and hormone (gibberellin) signaling. Using a positional cloning strategy and a retrotransposon insertion line, we identify two novel alleles of Lotus japonicus REDUCED ARBUSCULAR MYCORRHIZA1 (RAM1) encoding a GRAS protein. We confirm that RAM1 is a central regulator of arbuscule development: arbuscule branching is arrested in L. japonicus ram1 mutants, and ectopic expression of RAM1 activates genes critical for arbuscule development in the absence of fungal symbionts. Epistasis analysis places RAM1 downstream of CCaMK, CYCLOPS, and DELLA because ectopic expression of RAM1 restores arbuscule formation in cyclops mutants and in the presence of suppressive gibberellin. The corresponding proteins form a complex that activates RAM1 expression via binding of CYCLOPS to a cis element in the RAM1 promoter. We thus reveal a transcriptional cascade in arbuscule development that employs the promoter of RAM1 as integrator of symbiotic (transmitted via CCaMK and CYCLOPS) and hormonal (gibberellin) signals.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lotus/microbiología , Lotus/fisiología , Micorrizas/fisiología , Proteínas de Plantas/metabolismo , Simbiosis , Giberelinas , Lotus/genética , Micorrizas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...