Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Life Sci ; 286: 120072, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34688691

RESUMEN

AIMS: 5-Fluorouracil (5-FU), a thymidylate synthase (TS) inhibitor, has been used as the first-line chemotherapeutic drug for cholangiocarcinoma (CCA). The side effects and drug resistance have developed the limits of the clinical application of 5-FU in CCA treatment. Upregulation of Forkhead box M1 (FOXM1) and TS were shown to play a significant role in 5-FU resistance. In this study, the effect of Siomycin A (SioA), a FOXM1 inhibitor, on enhancing 5-FU cytotoxicity and reversing 5-FU resistance in CCA cell lines were demonstrated. MAIN METHODS: Human CCA cell lines, KKU-100 and KKU-213A were used. Cell viability was determined using MTT assay. Expression of FOXM1 and TS proteins were determined using Western blotting. FOXM1 mRNA expression was quantitated using real-time PCR. The combination and dose reduction (DRI) were analyzed according to the Chou and Talalay method. KEY FINDING: Single drug treatment of 5-FU and SioA effectively inhibited CCA cell growth in dose and time dependent fashions. The two CCA cell lines had different responses to 5-FU but exhibited similar sensitivity to SioA. FOXM1 and TS expression were increased in the 5-FU treated cells but were suppressed in the SioA treated cells. A direct binding of SioA, to TS and 5,10-methylene-tetrahydrofolate as an inactive ternary complex was simulated. The combined treatment of 5-FU with SioA showed a synergistic effect with a high DRI and restored 5-FU sensitivity in the 5-FU resistant cells. SIGNIFICANCE: Targeting FOXM1 using SioA in combination with 5-FU might be a strategy to overcome the 5-FU resistance in CCA.


Asunto(s)
Colangiocarcinoma/tratamiento farmacológico , Péptidos/farmacología , Timidilato Sintasa/metabolismo , Apoptosis/efectos de los fármacos , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/efectos de los fármacos , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colangiocarcinoma/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Fluorouracilo/farmacología , Proteína Forkhead Box M1/antagonistas & inhibidores , Proteína Forkhead Box M1/metabolismo , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Péptidos/metabolismo , Timidilato Sintasa/fisiología
2.
Heliyon ; 7(4): e06846, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33997388

RESUMEN

Forkhead box M1 (FOXM1) is a transcriptional factor which plays an important role in oncogenesis. Four FOXM1 isoforms, FOXM1a, FOXM1b, FOXM1c and FOXM1d, are known so far. Different FOXM1 isoforms influence progression of cancer in different cancer types. In this study, the FOXM1c isoform and its impact in cholangiocarcinoma (CCA) was identified. FOXM1c was found to be the predominant isoform in patient-CCA tissues and cell lines. Detection of FOXM1c expression in CCA tissues reflected the worse prognosis of the patients, namely the advanced stage and shorter survival. Suppression of FOXM1 expression using siRNA considerably reduced migration and invasion abilities of CCA cell lines. RNA sequencing analysis revealed claudin-1 as a target of FOXM1. FOXM1 exhibited a negative correlation with claudin-1 expression which was demonstrated in patient CCA tissues and cell lines. FOXM1 may be a potential target for therapeutic treatment of the metastatic CCA.

3.
PeerJ ; 9: e11067, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777535

RESUMEN

BACKGROUND: Cholangiocarcinoma (CCA) is a malignancy that originates from bile duct cells. The incidence and mortality of CCA are very high especially in Southeast Asian countries. Moreover, most CCA patients have a very poor outcome. Presently, there are still no effective treatment regimens for CCA. The resistance to several standard chemotherapy drugs occurs frequently; thus, searching for a novel effective treatment for CCA is urgently needed. METHODS: In this study, comprehensive bioinformatics analyses for identification of novel target genes for CCA therapy based on three microarray gene expression profiles (GSE26566, GSE32225 and GSE76297) from the Gene Expression Omnibus (GEO) database were performed. Based on differentially expressed genes (DEGs), gene ontology and pathway enrichment analyses were performed. Protein-protein interactions (PPI) and hub gene identifications were analyzed using STRING and Cytoscape software. Then, the expression of candidate genes from bioinformatics analysis was measured in CCA cell lines using real time PCR. Finally, the anti-tumor activity of specific inhibitor against candidate genes were investigated in CCA cell lines cultured under 2-dimensional and 3-dimensional cell culture models. RESULTS: The three microarray datasets exhibited an intersection consisting of 226 DEGs (124 up-regulated and 102 down-regulated genes) in CCA. DEGs were significantly enriched in cell cycle, hemostasis and metabolism pathways according to Reactome pathway analysis. In addition, 20 potential hub genes in CCA were identified using the protein-protein interaction (PPI) network and sub-PPI network analysis. Subsequently, CDC20 was identified as a potential novel targeted drug for CCA based on a drug prioritizing program. In addition, the anti-tumor activity of a potential CDC20 inhibitor, namely dinaciclib, was investigated in CCA cell lines. Dinaciclib demonstrated huge anti-tumor activity better than gemcitabine, the standard chemotherapeutic drug for CCA. CONCLUSION: Using integrated bioinformatics analysis, CDC20 was identified as a novel candidate therapeutic target for CCA.

4.
Sci Rep ; 9(1): 17266, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31754244

RESUMEN

Aberrant glycosylation is recognized as a cancer hallmark that is associated with cancer development and progression. In this study, the clinical relevance and significance of terminal fucose (TFG), by fucosyltransferase-1 (FUT1) in carcinogenesis and progression of cholangiocarcinoma (CCA) were demonstrated. TFG expression in human and hamster CCA tissues were determined using Ulex europaeus agglutinin-I (UEA-I) histochemistry. Normal bile ducts rarely expressed TFG while 47% of CCA human tissues had high TFG expression and was correlated with shorter survival of patients. In the CCA-hamster model, TFG was elevated in hyperproliferative bile ducts and gradually increased until CCA was developed. This evidence indicates the involvement of TFG in carcinogenesis and progression of CCA. The mechanistic insight was performed in 2 CCA cell lines. Suppression of TFG expression using siFUT1 or neutralizing the surface TFG with UEA-I significantly reduced migration, invasion and adhesion of CCA cells in correlation with the reduction of Akt/Erk signaling and epithelial-mesenchymal transition. A short pulse of EGF could stimulate Akt/Erk signaling via activation of EGF-EGFR cascade, however, decreasing TFG using siFUT1 or UEA-I treatment reduced the EGF-EGFR activation and Akt/Erk signaling. This evidence provides important insight into the relevant role and molecular mechanism of TFG in progression of CCA.


Asunto(s)
Colangiocarcinoma/metabolismo , Fucosa/genética , Fucosa/metabolismo , Adulto , Anciano , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Carcinogénesis/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Colangiocarcinoma/patología , Progresión de la Enfermedad , Factor de Crecimiento Epidérmico/metabolismo , Transición Epitelial-Mesenquimal/genética , Receptores ErbB/metabolismo , Femenino , Fucosa/fisiología , Fucosiltransferasas/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética , Transcriptoma/genética , Galactósido 2-alfa-L-Fucosiltransferasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...