Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Trends Plant Sci ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38821841

RESUMEN

Crop diversification practices offer numerous synergistic benefits. So far, research has traditionally been confined to exploring isolated, unidirectional single-process interactions among plants, soil, and microorganisms. Here, we present a novel and systematic perspective, unveiling the intricate web of plant-soil-microbiome interactions that trigger cascading effects. Applying the principles of cascading interactions can be an alternative way to overcome soil obstacles such as soil compaction and soil pathogen pressure. Finally, we introduce a research framework comprising the design of diversified cropping systems by including commercial varieties and crops with resource-efficient traits, the exploration of cascading effects, and the innovation of field management. We propose that this provides theoretical and methodological insights that can reveal new mechanisms by which crop diversity increases productivity.

2.
ISME J ; 16(11): 2467-2478, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35871251

RESUMEN

Soil biota can determine plant invasiveness, yet biogeographical comparisons of microbial community composition and function across ranges are rare. We compared interactions between Conyza canadensis, a global plant invader, and arbuscular mycorrhizal (AM) fungi in 17 plant populations in each native and non-native range spanning similar climate and soil fertility gradients. We then grew seedlings in the greenhouse inoculated with AM fungi from the native range. In the field, Conyza plants were larger, more fecund, and associated with a richer community of more closely related AM fungal taxa in the non-native range. Fungal taxa that were more abundant in the non-native range also correlated positively with plant biomass, whereas taxa that were more abundant in the native range appeared parasitic. These patterns persisted when populations from both ranges were grown together in a greenhouse; non-native populations cultured a richer and more diverse AM fungal community and selected AM fungi that appeared to be more mutualistic. Our results provide experimental support for evolution toward enhanced mutualism in non-native ranges. Such novel relationships and the rapid evolution of mutualisms may contribute to the disproportionate abundance and impact of some non-native plant species.


Asunto(s)
Micobioma , Micorrizas , Raíces de Plantas , Plantas , Suelo , Microbiología del Suelo , Simbiosis
3.
Ecol Evol ; 11(4): 1756-1768, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33614002

RESUMEN

Plant-soil feedbacks (PSFs) have been shown to strongly affect plant performance under controlled conditions, and PSFs are thought to have far reaching consequences for plant population dynamics and the structuring of plant communities. However, thus far the relationship between PSF and plant species abundance in the field is not consistent. Here, we synthesize PSF experiments from tropical forests to semiarid grasslands, and test for a positive relationship between plant abundance in the field and PSFs estimated from controlled bioassays. We meta-analyzed results from 22 PSF experiments and found an overall positive correlation (0.12 ≤  r ¯  ≤ 0.32) between plant abundance in the field and PSFs across plant functional types (herbaceous and woody plants) but also variation by plant functional type. Thus, our analysis provides quantitative support that plant abundance has a general albeit weak positive relationship with PSFs across ecosystems. Overall, our results suggest that harmful soil biota tend to accumulate around and disproportionately impact species that are rare. However, data for the herbaceous species, which are most common in the literature, had no significant abundance-PSFs relationship. Therefore, we conclude that further work is needed within and across biomes, succession stages and plant types, both under controlled and field conditions, while separating PSF effects from other drivers (e.g., herbivory, competition, disturbance) of plant abundance to tease apart the role of soil biota in causing patterns of plant rarity versus commonness.

4.
Microorganisms ; 8(12)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352781

RESUMEN

Tomato bushy stunt virus (TBSV) and Tomato mosaic virus (ToMV) are important economic pathogens in tomato fields. Rhizoglomus irregulare is a species of arbuscular mycorrhizal (AM) fungus that provides nutrients to host plants. To understand the effect of R. irregulare on the infection by TBSV/ToMV in tomato plants, in a completely randomized design, five treatments, including uninfected control plants without AM fungi (C), uninfected control plants with AM fungi (M) TBSV/ToMV-infected plants without AM fungi (V), TBSV/ToMV-infected plants before mycorrhiza (VM) inoculation, and inoculated plants with mycorrhiza before TBSV/ToMV infection (MV), were studied. Factors including viral RNA accumulation and expression of Pathogenesis Related proteins (PR) coding genes including PR1, PR2, and PR3 in the young leaves were measured. For TBSV, a lower level of virus accumulation and a higher expression of PR genes in MV plants were observed compared to V and VM plants. In contrast, for ToMV, a higher level of virus accumulation and a lower expression of PR genes in MV plants were observed as compared to V and VM plants. These results indicated that mycorrhizal symbiosis reduces or increases the viral accumulation possibly via the regulation of PR genes in tomato plants.

5.
Ecol Lett ; 23(1): 119-128, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31650676

RESUMEN

Plant diversity is critical to the functioning of ecosystems, potentially mediated in part by interactions with soil biota. Here, we characterised multiple groups of soil biota across a plant diversity gradient in a long-term experiment. We then subjected soil samples taken along this gradient to drought, freezing and a mechanical disturbance to test how plant diversity affects the responses of soil biota and growth of a focal plant to these disturbances. High plant diversity resulted in soils that were dominated by fungi and associated soil biota, including increased arbuscular mycorrhizal fungi and reduced plant-feeding nematodes. Disturbance effects on the soil biota were reduced when plant diversity was high, resulting in higher growth of the focal plant in all but the frozen soils. These results highlight the importance of plant diversity for soil communities and their resistance to disturbance, with potential feedback effects on plant productivity.


Asunto(s)
Ecosistema , Suelo , Biota , Plantas , Microbiología del Suelo
6.
PLoS One ; 14(8): e0220556, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31374095

RESUMEN

The new era in the design of modern healthy buildings necessitates multidisciplinary research efforts that link principles of engineering and material sciences with those of building biology, in order to better comprehend and apply underlying interactions among design criteria. As part of this effort, there have been an array of studies in relation to the effects of building characteristics on indoor microbiota and their propensity to cause health issues. Despite the abundance of scientific inquiries, limited studies have been dedicated to concomitantly link these effects to the deterioration of 'structural integrity' in the building materials. This study focuses on the observed biodeteriorative capabilities of indoor fungi upon the ubiquitous gypsum board material as a function of building age and room functionality within a university campus. We observed that the fungal growth significantly affected the physical (weight loss) and mechanical (tensile strength) properties of moisture-exposed gypsum board samples; in some cases, tensile strength and weight decreased by more than 80%. Such intertwined associations between the biodeterioration of building material properties due to viable indoor fungi, and as a function of building characteristics, would suggest a critical need towards multi-criteria design and optimization of next-generation healthy buildings. Next to structural integrity measures, with a better understanding of what factors and environmental conditions trigger fungal growth in built environment materials, we can also optimize the design of indoor living spaces, cleaning strategies, as well as emergency management measures during probable events such as flooding or water damage.


Asunto(s)
Contaminación del Aire Interior/análisis , Materiales de Construcción/microbiología , Monitoreo del Ambiente , Hongos/crecimiento & desarrollo , Salud Ambiental , Universidades
8.
New Phytol ; 222(1): 91-96, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30451287

RESUMEN

Contents Summary 91 I. Introduction 91 II. Primary PSF mechanisms 91 III. Factors mediating the mechanisms of PSF 93 IV. Conclusions and future directions 94 Acknowledgements 95 Author contributions 95 References 95 SUMMARY: Plant-soil feedback (PSF) occurs when plants alter soil properties that influence the performance of seedlings, with consequent effects on plant populations and communities. Many processes influence PSF, including changes in nutrient availability and the accumulation of natural enemies, mutualists or secondary chemicals. Typically, these mechanisms are investigated in isolation, yet no single mechanism is likely to be completely responsible for PSF as these processes can interact. Further, the outcome depends on which resources are limiting and the other plants and soil biota in the surrounding environment. As such, understanding the mechanisms of PSF and their role within plant communities requires quantification of the interactions among the processes influencing PSF and the associated abiotic and biotic contexts.


Asunto(s)
Retroalimentación , Plantas/metabolismo , Suelo , Modelos Biológicos
9.
Commun Biol ; 1: 116, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271996

RESUMEN

Most plants engage in symbioses with mycorrhizal fungi in soils and net consequences for plants vary widely from mutualism to parasitism. However, we lack a synthetic understanding of the evolutionary and ecological forces driving such variation for this or any other nutritional symbiosis. We used meta-analysis across 646 combinations of plants and fungi to show that evolutionary history explains substantially more variation in plant responses to mycorrhizal fungi than the ecological factors included in this study, such as nutrient fertilization and additional microbes. Evolutionary history also has a different influence on outcomes of ectomycorrhizal versus arbuscular mycorrhizal symbioses; the former are best explained by the multiple evolutionary origins of ectomycorrhizal lifestyle in plants, while the latter are best explained by recent diversification in plants; both are also explained by evolution of specificity between plants and fungi. These results provide the foundation for a synthetic framework to predict the outcomes of nutritional mutualisms.

11.
Ecol Lett ; 21(8): 1268-1281, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29896848

RESUMEN

Plants interact simultaneously with each other and with soil biota, yet the relative importance of competition vs. plant-soil feedback (PSF) on plant performance is poorly understood. Using a meta-analysis of 38 published studies and 150 plant species, we show that effects of interspecific competition (either growing plants with a competitor or singly, or comparing inter- vs. intraspecific competition) and PSF (comparing home vs. away soil, live vs. sterile soil, or control vs. fungicide-treated soil) depended on treatments but were predominantly negative, broadly comparable in magnitude, and additive or synergistic. Stronger competitors experienced more negative PSF than weaker competitors when controlling for density (inter- to intraspecific competition), suggesting that PSF could prevent competitive dominance and promote coexistence. When competition was measured against plants growing singly, the strength of competition overwhelmed PSF, indicating that the relative importance of PSF may depend not only on neighbour identity but also density. We evaluate how competition and PSFs might interact across resource gradients; PSF will likely strengthen competitive interactions in high resource environments and enhance facilitative interactions in low-resource environments. Finally, we provide a framework for filling key knowledge gaps and advancing our understanding of how these biotic interactions influence community structure.


Asunto(s)
Plantas , Microbiología del Suelo , Suelo , Biota , Retroalimentación
12.
Materials (Basel) ; 10(11)2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-29088118

RESUMEN

The development and application of bio-sourced composites have been gaining wide attention, yet their deterioration due to the growth of ubiquitous microorganisms during storage/manufacturing/in-service phases is still not fully understood for optimum material selection and design purposes. In this study, samples of non-woven flax fibers, hemp fibers, and mats made of co-mingled randomly-oriented flax or hemp fiber (50%) and polypropylene fiber (50%) were subjected to 28 days of exposure to (i) no water-no fungi, (ii) water only and (iii) water along with the Chaetomium globosum fungus. Biocomposite samples were measured for weight loss over time, to observe the rate of fungal growth and the respiration of cellulose components in the fibers. Tensile testing was conducted to measure mechanical properties of the composite samples under different configurations. Scanning electron microscopy was employed to visualize fungal hyphal growth on the natural fibers, as well as to observe the fracture planes and failure modes of the biocomposite samples. Results showed that fungal growth significantly affects the dry mass as well as the tensile elastic modulus of the tested natural fiber mats and composites, and the effect depends on both the type and the length scale of fibers, as well as the exposure condition and time.

13.
Ecol Evol ; 7(16): 6482-6492, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28861250

RESUMEN

Differences in the direction and degree to which invasive alien and native plants are influenced by mycorrhizal associations could indicate a general mechanism of plant invasion, but whether or not such differences exist is unclear. Here, we tested whether mycorrhizal responsiveness varies by plant invasive status while controlling for phylogenetic relatedness among plants with two large grassland datasets. Mycorrhizal responsiveness was measured for 68 taxa from the Northern Plains, and data for 95 taxa from the Central Plains were included. Nineteen percent of taxa from the Northern Plains had greater total biomass with mycorrhizas while 61% of taxa from the Central Plains responded positively. For the Northern Plains taxa, measurable effects often depended on the response variable (i.e., total biomass, shoot biomass, and root mass ratio) suggesting varied resource allocation strategies when roots are colonized by arbuscular mycorrhizal fungi. In both datasets, invasive status was nonrandomly distributed on the phylogeny. Invasive taxa were mainly from two clades, that is, Poaceae and Asteraceae families. In contrast, mycorrhizal responsiveness was randomly distributed over the phylogeny for taxa from the Northern Plains, but nonrandomly distributed for taxa from the Central Plains. After controlling for phylogenetic similarity, we found no evidence that invasive taxa responded differently to mycorrhizas than other taxa. Although it is possible that mycorrhizal responsiveness contributes to invasiveness in particular species, we find no evidence that invasiveness in general is associated with the degree of mycorrhizal responsiveness. However, mycorrhizal responsiveness among species grown under common conditions was highly variable, and more work is needed to determine the causes of this variation.

14.
New Phytol ; 215(4): 1314-1332, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28649741

RESUMEN

Contents 1314 I. 1315 II. 1316 III. 1322 IV. 1323 V. 1325 VI. 1326 VII. 1326 VIII. 1327 1328 References 1328 SUMMARY: Invasions of alien plants are typically studied as invasions of individual species, yet interactions between plants and symbiotic fungi (mutualists and potential pathogens) affect plant survival, physiological traits, and reproduction and hence invasion success. Studies show that plant-fungal associations are frequently key drivers of plant invasion success and impact, but clear conceptual frameworks and integration across studies are needed to move beyond a series of case studies towards a more predictive understanding. Here, we consider linked plant-fungal invasions from the perspective of plant and fungal origin, simplified to the least complex representations or 'motifs'. By characterizing these interaction motifs, parallels in invasion processes between pathogen and mutualist fungi become clear, although the outcomes are often opposite in effect. These interaction motifs provide hypotheses for fungal-driven dynamics behind observed plant invasion trajectories. In some situations, the effects of plant-fungal interactions are inconsistent or negligible. Variability in when and where different interaction motifs matter may be driven by specificity in the plant-fungal interaction, the size of the effect of the symbiosis (negative to positive) on plants and the dependence (obligate to facultative) of the plant-fungal interaction. Linked plant-fungal invasions can transform communities and ecosystem function, with potential for persistent legacies preventing ecosystem restoration.


Asunto(s)
Hongos/patogenicidad , Plantas/microbiología , Ecosistema , Hongos/fisiología , Especificidad del Huésped , Interacciones Huésped-Patógeno/fisiología , Simbiosis
15.
New Phytol ; 214(3): 1330-1337, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28186629

RESUMEN

Although arbuscular mycorrhizal (AM) fungi are obligate symbionts that can influence plant growth, the magnitude and direction of these effects are highly variable within fungal genera and even among isolates within species, as well as among plant taxa. To determine whether variability in AM fungal morphology and growth is correlated with AM fungal effects on plant growth, we established a common garden experiment with 56 AM fungal isolates comprising 17 genera and six families growing with three plant host species. Arbuscular mycorrhizal fungal morphology and growth was highly conserved among isolates of the same species and among species within a family. By contrast, plant growth response to fungal inoculation was highly variable, with the majority of variation occurring among different isolates of the same AM fungal species. Our findings show that host performance cannot be predicted from AM fungal morphology and growth traits. Divergent effects on plant growth among isolates within an AM fungal species may be caused by coevolution between co-occurring fungal and plant populations.


Asunto(s)
Evolución Biológica , Glomeromycota/citología , Micorrizas/fisiología , Desarrollo de la Planta , Plantas/microbiología , Simbiosis , Filogenia , Carácter Cuantitativo Heredable , Especificidad de la Especie
16.
Science ; 355(6321): 181-184, 2017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-28082590

RESUMEN

Feedback with soil biota is an important determinant of terrestrial plant diversity. However, the factors regulating plant-soil feedback, which varies from positive to negative among plant species, remain uncertain. In a large-scale study involving 55 species and 550 populations of North American trees, the type of mycorrhizal association explained much of the variation in plant-soil feedbacks. In soil collected beneath conspecifics, arbuscular mycorrhizal trees experienced negative feedback, whereas ectomycorrhizal trees displayed positive feedback. Additionally, arbuscular mycorrhizal trees exhibited strong conspecific inhibition at multiple spatial scales, whereas ectomycorrhizal trees exhibited conspecific facilitation locally and less severe conspecific inhibition regionally. These results suggest that mycorrhizal type, through effects on plant-soil feedbacks, could be an important contributor to population regulation and community structure in temperate forests.


Asunto(s)
Retroalimentación Fisiológica , Bosques , Micorrizas/fisiología , Microbiología del Suelo , Árboles/fisiología , Dinámica Poblacional , Simbiosis , Árboles/microbiología
17.
Mycorrhiza ; 27(3): 273-282, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27909817

RESUMEN

Despite the importance of arbuscular mycorrhizal (AM) fungi within terrestrial ecosystems, we know little about how natural AM fungal communities are structured. To date, the majority of studies examining AM fungal community diversity have focused on single habitats with similar environmental conditions, with relatively few studies having assessed the diversity of AM fungi over large-scale environmental gradients. In this study, we characterized AM fungal communities in the soil along a high-elevation gradient in the North American Rocky Mountains. We focused on phylogenetic patterns of AM fungal communities to gain insight into how AM fungal communities are naturally assembled. We found that alpine AM fungal communities had lower phylogenetic diversity relative to lower elevation communities, as well as being more heterogeneous in composition than either treeline or subalpine communities. AM fungal communities were phylogenetically clustered at all elevations sampled, suggesting that environmental filtering, either selection by host plants or fungal niches, is the primary ecological process structuring communities along the gradient.


Asunto(s)
Micorrizas/clasificación , Análisis de Secuencia de ARN/métodos , Microbiología del Suelo , Aclimatación , Ecosistema , Micorrizas/genética , Filogenia , Filogeografía , ARN de Hongos/genética , Suelo/química
18.
Microb Ecol ; 72(2): 305-12, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27098176

RESUMEN

Archaea are widespread and abundant in soils, oceans, or human and animal gastrointestinal (GI) tracts. However, very little is known about the presence of Archaea in indoor environments and factors that can regulate their abundances. Using a quantitative PCR approach, and targeting the archaeal and bacterial 16S rRNA genes in floor dust samples, we found that Archaea are a common part of the indoor microbiota, 5.01 ± 0.14 (log 16S rRNA gene copies/g dust, mean ± SE) in bedrooms and 5.58 ± 0.13 in common rooms, such as living rooms. Their abundance, however, was lower than bacteria: 9.20 ± 0.32 and 9.17 ± 0.32 in bedrooms and common rooms, respectively. In addition, by measuring a broad array of environmental factors, we obtained preliminary insights into how the abundance of total archaeal 16S rRNA gene copies in indoor environment would be associated with building characteristics and occupants' activities. Based on the results, Archaea are not equally distributed within houses, and the areas with greater input of outdoor microbiome and higher traffic and material heterogeneity tend to have a higher abundance of Archaea. Nevertheless, more research is needed to better understand causes and consequences of this microbial group in indoor environments.


Asunto(s)
Archaea/aislamiento & purificación , Microbiología Ambiental , Vivienda , Archaea/clasificación , ADN de Archaea/genética , Humanos , Microbiota , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
19.
Science ; 351(6272): 457, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26823419

RESUMEN

Tredennick et al. criticize one of our statistical analyses and emphasize the low explanatory power of models relating productivity to diversity. These criticisms do not detract from our key findings, including evidence consistent with the unimodal constraint relationship predicted by the humped-back model and evidence of scale sensitivities in the form and strength of the relationship.


Asunto(s)
Biodiversidad , Pradera , Desarrollo de la Planta
20.
R Soc Open Sci ; 2(9): 150300, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26473052

RESUMEN

Disruption of mycorrhizal fungi that form symbioses with local native plants is a strategy used by some invasive exotic plants for competing within their resident communities. Example invasive plants include Alliaria petiolata (garlic mustard) and Brassica nigra (black mustard), both non-mycorrhizal plants in the Family Brassicaceae. Although there is clear evidence for mycorrhizal degradation, it is not known if such an effect is widespread across the naturalized range. In this study, we tested the ability of black mustard to degrade the local mycorrhizal symbiosis and supress the growth of native flora from across a variety of locations where black mustard has invaded. We found that the effects on mycorrhizal fungi and on the growth of native plants were consistently negative at the various sites. The present results indicate that degradation of the mycorrhizal symbiosis by black mustard is of general significance, and may be highly problematic considering the large range that it has occupied in open fields across North America.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...