Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 11(10): e0164175, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27711131

RESUMEN

Ionophores such as valinomycin and nigericin are potent tools for studying the impact of ion perturbance on cellular functions. To obtain a broader picture about molecular components involved in mediating the effects of these drugs on yeast cells under respiratory growth conditions, we performed a screening of the haploid deletion mutant library covering the Saccharomyces cerevisiae nonessential genes. We identified nearly 130 genes whose absence leads either to resistance or to hypersensitivity to valinomycin and/or nigericin. The processes affected by their protein products range from mitochondrial functions through ribosome biogenesis and telomere maintenance to vacuolar biogenesis and stress response. Comparison of the results with independent screenings performed by our and other laboratories demonstrates that although mitochondria might represent the main target for both ionophores, cellular response to the drugs is very complex and involves an intricate network of proteins connecting mitochondria, vacuoles, and other membrane compartments.


Asunto(s)
Ionóforos/farmacología , Nigericina/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Valinomicina/farmacología , Ontología de Genes , Concentración de Iones de Hidrógeno , Mitocondrias/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo
2.
Chem Res Toxicol ; 25(8): 1598-608, 2012 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-22747191

RESUMEN

Selenium (Se) is a trace element that is essential for human health as it takes part in many cellular processes. The cellular response to this compound elicits very diverse processes including DNA damage response and repair. Because an inorganic form of Se, sodium selenite (SeL), has often been a part of numerous studies and because this form of Se is used as a dietary supplement by the public, here, we elucidated mechanisms of SeL-induced toxicity in yeast Saccharomyces cerevisiae using a combination of systematic genetic and transcriptome analysis. First, we screened the yeast haploid deletion mutant library for growth in the presence of this Se compound. We identified 39 highly SeL sensitive mutants. The corresponding deleted genes encoded mostly proteins involved in DNA damage response and repair, vacuole function, glutathione (GSH) metabolism, transcription, and chromatin metabolism. DNA damage response and repair mutants were examined in more detail: a synergistic interaction between postreplication (PRR) and homologous recombination (HRR) repair pathways was revealed. In addition, the effect of combined defects in HRR and GSH metabolism was analyzed, and again, the synergistic interaction was found. Second, microarray analysis was used to reveal expression profile changes after SeL exposure. The gene process categories "amino acid metabolism" and "generation of precursor metabolites and energy" comprised the greatest number of induced and repressed genes, respectively. We propose that SeL-induced toxicity markedly results from DNA injury, thereby highlighting the importance of DNA damage response and repair pathways in protecting cells against toxic effects of this Se compound. In addition, we suggest that SeL toxicity also originates from damage to cellular proteins, including those acting in DNA damage response and repair.


Asunto(s)
Saccharomyces cerevisiae/efectos de los fármacos , Selenito de Sodio/toxicidad , Cromatina/metabolismo , Reparación del ADN/efectos de los fármacos , Glutatión/metabolismo , Recombinación Homóloga/efectos de los fármacos , Análisis por Micromatrices , Mutación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Selenito de Sodio/química , Transcriptoma/efectos de los fármacos
3.
BMC Genomics ; 11: 153, 2010 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-20202201

RESUMEN

BACKGROUND: CTBT (7-chlorotetrazolo [5,1-c]benzo[1,2,4]triazine) increases efficacy of commonly used antifungal agents by an unknown mechanism. It increases the susceptibility of Saccharomyces cerevisiae, Candida albicans and Candida glabrata cells to cycloheximide, 5-fluorocytosine and azole antimycotic drugs. Here we elucidate CTBT mode of action with a combination of systematic genetic and transcriptome analysis. RESULTS: To identify the cellular processes affected by CTBT, we screened the systematic haploid deletion mutant collection for CTBT sensitive mutants. We identified 169 hypersensitive deletion mutants. The deleted genes encode proteins mainly involved in mitochondrial functions, DNA repair, transcription and chromatin remodeling, and oxidative stress response. We found that the susceptibility of yeast cells to CTBT depends on molecular oxygen. Transcriptome analysis of the immediate early response to CTBT revealed rapid induction of oxidant and stress response defense genes. Many of these genes depend on the transcription factors Yap1 and Cin5. Yap1 accumulates rapidly in the nucleus in CTBT treated cells suggesting acute oxidative stress. Moreover, molecular calculations supported a superoxide generating activity of CTBT. Superoxide production in vivo by CTBT was found associated to mitochondria as indicated by oxidation of MitoSOX Red. CONCLUSION: We conclude that CTBT causes intracellular superoxide production and oxidative stress in fungal cells and is thus enhancing antimycotic drug effects by a secondary stress.


Asunto(s)
Perfilación de la Expresión Génica , Estrés Oxidativo/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Triazinas/farmacología , Antifúngicos/farmacología , ADN de Hongos/efectos de los fármacos , ADN Mitocondrial/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Superóxidos/metabolismo
4.
Mitochondrion ; 8(2): 117-29, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18024212

RESUMEN

Valinomycin and nigericin are potassium ionophores acting selectively on the mitochondrial inner membrane of Saccharomyces cerevisiae [Kovac, L., Bohmerova, E., Butko, P., 1982a. Ionophores and intact cells. I. Valinomycin and nigericin act preferentially on mitochondria and not on the plasma membrane of Saccharomyces cerevisiae. Biochim. Biophys. Acta 721, 341-348]. However, the molecular mechanism of their action is not understood. Here we show that their selective effect on mitochondrial membranes is not caused by the pleiotropic drug resistance system. To identify the molecular components mediating the action of ionophores we isolated several mutants specifically resistant to valinomycin and/or nigericin. In contrast to the parental strain, these mutants do not form respiratory-deficient cells in the presence of ionophores. Moreover, all mutants harbor extensively fragmented mitochondria and these morphological defects can be alleviated by the ionophores. Interestingly, we observed that these mitochondrial defects may be accompanied by changes in vacuolar dynamics. Our results demonstrate that the classical genetic approach can provide a starting point for the analysis of components involved in the action of ionophores on mitochondria-related processes in eukaryotic cell.


Asunto(s)
Farmacorresistencia Fúngica/genética , Ionóforos/farmacología , Membranas Mitocondriales/efectos de los fármacos , Nigericina/farmacología , Saccharomyces cerevisiae/genética , Valinomicina/farmacología , Membranas Mitocondriales/ultraestructura , Mutación , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/efectos de la radiación , Rayos Ultravioleta
5.
Antimicrob Agents Chemother ; 47(12): 3890-900, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14638499

RESUMEN

Ten mutants of the yeast Saccharomyces cerevisiae resistant to the antimycotic terbinafine were isolated after chemical or UV mutagenesis. Molecular analysis of these mutants revealed single base pair exchanges in the ERG1 gene coding for squalene epoxidase, the target of terbinafine. The mutants did not show cross-resistance to any of the substrates of various pleiotropic drug resistance efflux pumps tested. The ERG1 mRNA levels in the mutants did not differ from those in the wild-type parent strains. Terbinafine resistance was transmitted with the mutated alleles in gene replacement experiments, proving that single amino acid substitutions in the Erg1 protein were sufficient to confer the resistance phenotype. The amino acid changes caused by the point mutations were clustered in two regions of the Erg1 protein. Seven mutants carried the amino acid substitutions F402L (one mutant), F420L (one mutant), and P430S (five mutants) in the C-terminal part of the protein; and three mutants carried an L251F exchange in the central part of the protein. Interestingly, all exchanges identified involved amino acids which are conserved in the squalene epoxidases of yeasts and mammals. Two mutations that were generated by PCR mutagenesis of the ERG1 gene and that conferred terbinafine resistance mapped in the same regions of the Erg1 protein, with one resulting in an L251F exchange and the other resulting in an F433S exchange. The results strongly indicate that these regions are responsible for the interaction of yeast squalene epoxidase with terbinafine.


Asunto(s)
Antifúngicos/farmacología , Naftalenos/farmacología , Oxigenasas/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Alelos , Secuencia de Aminoácidos , Clonación Molecular , ADN de Hongos/genética , Farmacorresistencia Fúngica , Escherichia coli/genética , Vectores Genéticos , Datos de Secuencia Molecular , Mutagénesis , Plásmidos/genética , Recombinación Genética , Escualeno-Monooxigenasa , Terbinafina
6.
Biochem Biophys Res Commun ; 309(3): 666-71, 2003 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-12963042

RESUMEN

A terbinafine-resistant mutant of the yeast Saccharomyces cerevisiae with a complex pleiotropic phenotype (resistance to terbinafine and itraconazole, sensitivity to several antifungal compounds, respiration deficiency, and temperature sensitivity) has been isolated after chemical mutagenesis. Detailed analysis revealed that some of its traits (thermosensitive growth, sensitivity to the polyene antimycotic nystatin and to calcofluor white) are linked to alterations in the cell wall. A single C1288G base change in the ERG1 gene resulting in the substitution of proline by alanine at position 430 in the enzyme squalene epoxidase (Erg1p) was identified as the sole cause of terbinafine resistance. This novel mutation in the ERG1 gene confers only partial resistance of Erg1p to terbinafine, however, even the low level of resistance enables terbinafine-treated mutant cells to maintain adequate ergosterol levels over longer cultivation periods. Lack of interference of squalene accumulation with growth of terbinafine-treated mutant cells indicates that the antimycotic effect of terbinafine in S. cerevisiae may be linked primarily to ergosterol depletion.


Asunto(s)
Antifúngicos/farmacología , Farmacorresistencia Fúngica/genética , Genes Fúngicos , Naftalenos/farmacología , Oxigenasas/genética , Saccharomyces cerevisiae/genética , Permeabilidad de la Membrana Celular , Células Clonales , Ergosterol/biosíntesis , Fenotipo , Mutación Puntual , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Escualeno-Monooxigenasa , Terbinafina
7.
FEMS Microbiol Lett ; 206(1): 121-5, 2002 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-11786267

RESUMEN

Sterol esterification in Saccharomyces cerevisiae is catalyzed by two acyl-CoA:sterol acyltransferases encoded by the genes ARE1 and ARE2. Using double mutants in the HEM1 gene and individual ARE genes we demonstrated that the relative contribution of these two enzymes to sterol esterification was dependent on cellular heme status. Observed changes in sterol esterification could be explained by a different effect of heme on the transcription of both genes: while the ARE1 transcript level was elevated in heme-deficient and anaerobic cells, the ARE2 gene transcript was more abundant in aerobic cells competent for heme synthesis. Our results indicate that transcriptional regulation of ARE genes by heme and specific substrate preferences of Are1p and Are2p may be involved in the adaptation of yeast sterol metabolism to hypoxia.


Asunto(s)
Aciltransferasas/metabolismo , Regulación Fúngica de la Expresión Génica , Hemo/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Esteroles/metabolismo , Anaerobiosis , Esterificación , Oxígeno/farmacología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Esterol O-Aciltransferasa/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...