Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202400765, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742808

RESUMEN

A novel mononuclear Cu(I) complex was synthesized via coordination with a benzoquinoxalin-2'-one-1,2,3-triazole chelating diimine and the bis[(2-diphenylphosphino)phenyl] ether (DPEPhos), to target a new and efficient photosensitizer for photocatalytic CO2 reduction. The Cu(I) complex absorbs in the blue-green region of the visible spectrum, with a broad band having a maximum at 475 nm (ϵ =4500 M-1 cm-1), which is assigned to the metal-to-ligand charge transfer (MLCT) transition from the Cu(I) to the benzoquinoxalin-2'-one moiety of the diimine. Surprisingly, photo-driven experiments for the CO2 reduction showed that this complex can undergo a photoinduced electron transfer with a sacrificial electron donor and accumulate electrons on the diimine backbone. Photo-driven experiments in a CO2 atmosphere revealed that this complex can not only act as a photosensitizer, when combined with an Fe(III)-porphyrin, but can also selectively produce CO from CO2. Thus, owing to its charge-accumulation properties, the non-innocent benzoquinoxalin-2-one based ligand enabled the development of the first copper(I)-based photocatalyst for CO2 reduction.

2.
Adv Sci (Weinh) ; 11(21): e2309043, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38509846

RESUMEN

The carbonyl cluster compound [GeRu6(CO)18HI] is unique in regard to its structure and bonding with a GeRu6 cluster core, a planar GeRu4HI unit, extensive multi-center bonding, and an aromatic ring current similar to benzene (9-10 nA T-1). The open-shell cluster core is a Ge-centered five-membered Ru4(Ru2) ring with CO ligands and an additional H and I atom, each bridging two Ru atoms on opposite sides of the cluster core. The compound is prepared at 130 °C in a weakly-coordinating ionic liquid.

3.
J Chem Phys ; 160(6)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38341783

RESUMEN

A route to assess non-linear light-matter interactions from the increasingly popular GW-Bethe-Salpeter equation (GW-BSE) method is outlined. In the present work, the necessary analytic expressions within the static-screened exchange approximation of the BSE are derived. This enables a straightforward implementation of the computation of the first hyperpolarizability as well as two-photon absorption processes for molecular systems. Benchmark calculations on small molecular systems reveal that the GW-BSE method is intriguingly accurate for predicting both first hyperpolarizabilities and two-photon absorption strengths. Using state-of-the-art Kohn-Sham references as a starting point, the accuracy of the GW-BSE method rivals that of the coupled-cluster singles-and-doubles method, outperforming both second-order coupled-cluster and time-dependent density-functional theory.

4.
ACS Omega ; 9(2): 2220-2233, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38250424

RESUMEN

A series of monometallic Ag(I) and Cu(I) halide complexes bearing 2-(diphenylphosphino)pyridine (PyrPhos, L) as a ligand were synthesized and spectroscopically characterized. The structure of most of the derivatives was unambiguously established by X-ray diffraction analysis, revealing the formation of mono-, di-, and tetranuclear complexes having general formulas MXL3 (M = Cu, X = Cl, Br; M = Ag, X = Cl, Br, I), Ag2X2L3 (X = Cl, Br), and Ag4X4L4 (X = Cl, Br, I). The Ag(I) species were compared to the corresponding Cu(I) analogues from a structural point of view. The formation of Cu(I)/Ag(I) heterobimetallic complexes MM'X2L3 (M/M' = Cu, Ag; X = Cl, Br, I) was also investigated. The X-ray structure of the bromo-derivatives revealed the formation of two possible MM'Br2L3 complexes with Cu/Ag ratios, respectively, of 7:1 and 1:7. The ratio between Cu and Ag was studied by scanning electron microscopy-energy-dispersive X-ray analysis (SEM-EDX) measurements. The structure of the binuclear homo- and heterometallic derivatives was investigated using density functional theory (DFT) calculations, revealing the tendency of the PyrPhos ligands not to maintain the bridging motif in the presence of Ag(I) as the metal center.

5.
Dalton Trans ; 52(46): 17389-17397, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37942816

RESUMEN

[V2(HCyclal)2] is prepared by controlled oxidation of vanadium nanoparticles at 50 °C in toluene. The V(0) nanoparticles are synthesized in THF by reduction of VCl3 with lithium naphthalenide. They exhibit very small particle sizes of 1.2 ± 0.2 nm and a high reactivity (e.g. with air or water). By reaction of V(0) nanoparticles with the azacrown ether H4Cyclal, [V2(HCyclal)2] is obtained with deep green crystals and high yield. The title compound exhibits a V(III) dimer (V⋯V: 304.1(1) pm) with two deprotonated [HCyclal]3- ligands as anions. V(0) nanoparticles as well as the sole coordination of V(III) by a crown ether as the ligand and nitrogen as sole coordinating atom are shown for the first time. Magnetic measurements and computational results point to antiferromagnetic coupling within the V(III) couple, establishing an antiferromagnetic spin S = 1 dimer with the magnetic susceptibility determined by the thermal population of the total spin ranging from ST = 0 to ST = 2.

6.
Inorg Chem ; 62(38): 15627-15640, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37682719

RESUMEN

The synthesis of C∧C∧P pre-ligands based on a dicyclohexylphosphine-substituted biphenyl framework is reported. The pre-ligands form the respective non-palindromic pincer complexes of PtII and PdII via double oxidative addition and subsequent comproportionation or C-H activation. The complexes of PtII as well as PdII emit similar green phosphorescence efficiently in the solid state, the former also in solution albeit with less intensity. The most fascinating photophysical feature, however, is a direct singlet-triplet (S0 → T1) excitation of this phosphorescence in the spectral window between the emission and the major singlet-singlet UV absorption. The S0 → T1 excitation spectra show a rich vibronic pattern, which is especially pronounced for the solid samples at cryogenic temperatures. The molar extinction of the lowest-energy singlet-triplet absorption band of the homologous Pt and Pd complexes as well as that of the Pt complex with a different (NHC) ancillary ligand were determined in tetrahydrofuran solutions. Quantum efficiencies of triplet formation (by intersystem crossing) via the "standard" excitation pathway S0 → Sn → T1 were determined for the Pt complexes and found to be different in dependence of the ancillary ligand.

7.
Phys Chem Chem Phys ; 25(31): 20880-20891, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37525899

RESUMEN

Binuclear coinage metal phosphine complexes are examined under ion trap isolation in order to elucidate their noncovalent binding, structural properties and intrinsic electronic spectra. Our survey shows an intriguing order of electronic transitions obtained by in situ synthesis and mass-spectrometrically supported UV photodissociation spectroscopy on a series of six isolated homo- and heterobinuclear complexes of type [MM'(dcpm)2]2+ (M, M' = CuI, AgI, AuI; dcpm = bis(dicyclohexyl-phosphino)methane). This approach provides the unique opportunity to study all possible coinage metal interactions within a fixed ligand framework. A successive blue-shift (33 700-38 500 cm-1; 297-260 nm) of the lowest-energy bright electronic transition energy in gas phase was observed in the order of Cu2 < CuAu < CuAg < Au2 < AgAu < Ag2. This order was reproduced by quantum chemical calculations using a scalar-relativistic GW-Bethe-Salpeter-equation (GW-BSE) approach. Theory ascribes the electronic bands of all complexes to metal-centered 1MC(dσ*-pσ) transitions revealing a strengthening of metal-metal' (M-M') binding upon excitation, in agreement to mass spetrometric results. A test of the correlation of transition energies with M-M' distance by quantum chemical calculations of single point energies as a function of intermetallic distance indicates qualitative agreement with experimental results. However, the experimentally observed high sensitivity of spectroscopic shifts towards metal composition cannot be accounted for solely by M-M' distance variation. The differences in electronic transitions are qualitatively rationalized by the varying (n + 1)s (n = 3, 4, 5) orbital contributions (increase from Cu2via CuAu/CuAg to Au2/AgAu/Ag2) within the nd(n + 1)s/p-hybridization for the ground electronic state of the different complexes, whereas the excited state (of (n + 1)p orbital character) shows significantly less variation in energy. In particular, the observed spectroscopic and mass spectrometric sequence for the Ag/Au complexes is traced back to the interplay of Pauli repulsion and variation in metal-ligand bond strength within the orbital hybridization model.

8.
J Chem Phys ; 159(4)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37522402

RESUMEN

A two-component contour deformation (CD) based GW method that employs frequency sampling to drastically reduce the computational effort when assessing quasiparticle states far away from the Fermi level is outlined. Compared to the canonical CD-GW method, computational scaling is reduced by an order of magnitude without sacrificing accuracy. This allows for an efficient calculation of core ionization energies. The improved computational efficiency is used to provide benchmarks for core ionized states, comparing the performance of 15 density functional approximations as Kohn-Sham starting points for GW calculations on a set of 65 core ionization energies of 32 small molecules. Contrary to valence states, GW calculations on core states prefer functionals with only a moderate amount of Hartree-Fock exchange. Moreover, modern ab initio local hybrid functionals are also shown to provide excellent generalized Kohn-Sham references for core GW calculations. Furthermore, the core-valence separated Bethe-Salpeter equation (CVS-BSE) is outlined. CVS-BSE is a convenient tool to probe core excited states. The latter is tested on a set of 40 core excitations of eight small inorganic molecules. Results from the CVS-BSE method for excitation energies and the corresponding absorption cross sections are found to be in excellent agreement with those of reference damped response BSE calculations.

9.
Dalton Trans ; 52(23): 7809-7818, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37157971

RESUMEN

Heteroleptic copper(I) complexes, with a diimine as a chromophoric unit and a bulky diphosphine as an ancillary ligand, have the advantage of a reduced pseudo Jahn-Teller effect in their excited state over the corresponding homoleptic bis(diimine) complexes. Nevertheless, their lowest absorption lies generally between 350 to 500 nm. Aiming at a strong absorption in the visible by stable heteroleptic Cu(I) complexes, we designed a novel diimine based on 4-(benzo[g]quinoxal-2'-yl)-1,2,3-triazole derivatives. The large π-conjugation of the benzoquinoxaline moiety shifted bathochromically the absorption with regard to other diimine-based Cu(I) complexes. Adding another Cu(I) core broadened the absorption and extended it to considerably longer wavelengths. Moreover, by fine-tuning the structure of the dichelating ligand, we achieved a panchromatic absorption up to 700 nm with a high molar extinction coefficient of 8000 M-1 cm-1 at maximum (λ = 570 nm), making this compound attractive for light-harvesting antennae.

10.
J Chem Phys ; 158(14): 144102, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37061489

RESUMEN

The increasingly popular GW method is becoming a convenient tool to determine vertical ionization energies in molecular systems. However, depending on the formalism used and the range of orbitals investigated, it may be hampered by a steep computational scaling. To alleviate this issue, correlated natural virtual orbitals (NVOs) based on second-order Møller-Plesset (MP2) and direct MP2 correlation energies are implemented, and the resulting correlated NVOs are tested on GW quasiparticle energies. Test cases include the popular GW variants G0W0 and evGW0 as well as more elaborate vertex corrections. We find that for increasingly larger molecular systems and basis sets, NVOs considerably improve efficiency. Furthermore, we test the performance of the truncated (frozen) NVO ansatz on the GW100 test set. For the latter, it is demonstrated that, using a carefully chosen truncation threshold, NVOs lead to a negligible loss in accuracy while providing speedups of one order of magnitude. Furthermore, we compare the resulting quasiparticle energies to very accurate vertical ionization energies obtained from coupled-cluster theory with singles, doubles, and noniterative triples [CCSD(T)], confirming that the loss in accuracy introduced by truncating the NVOs is negligible compared to the methodical errors in the GW approximation. It is also demonstrated that the choice of basis set impacts results far more than using a suitably truncated NVO space. Therefore, at the same computational expense, more accurate results can be obtained using NVOs. Finally, we provide improved reference CCSD(T) values for the GW100 test set, which have been obtained using the def2-QZVPP basis set.

11.
J Chem Phys ; 157(19): 194113, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36414465

RESUMEN

The direct random-phase approximation (dRPA) is used to calculate and compare atomization energies for the HEAT set and ten selected molecules of the G2-1 set using both plane waves and Gaussian-type orbitals. We describe detailed procedures to obtain highly accurate and well converged results for the projector augmented-wave method as implemented in the Vienna Ab initio Simulation Package as well as the explicitly correlated dRPA-F12 method as implemented in the TURBOMOLE package. The two approaches agree within chemical accuracy (1 kcal/mol) for the atomization energies of all considered molecules, both for the exact exchange as well as for the RPA. The root mean-square deviation is 0.41 kcal/mol for the exact exchange (evaluated using density functional theory orbitals) and 0.33 kcal/mol for exact exchange plus correlation from the RPA.

12.
Phys Chem Chem Phys ; 24(41): 25106-25117, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-35920212

RESUMEN

The influence of long-range interactions on the structure of complexes of Eu(III) with four 9-hydroxy-phenalen-1-one ligands (HPLN) and one alkaline earth metal dication [Eu(PLN)4AE]+ (AE: Mg, Ca, Sr, and Ba) is analyzed. Through the [Eu(PLN)4Ca]+ complex, which is a charged complex with two metals-one of them a lanthanoid-and with four relatively fluxional π-ligands, the difficulties of describing such systems are identified. The inclusion of the D3(BJ) or D4 corrections to different density functionals introduces significant changes in the structure, which are shown to stem from the interaction between pairs of PLN ligands. This interaction is studied further with a variety of density functionals, wave-function based methods, and by means of the random phase approximation. By comparing the computed results with those from experimental evidence of gas-phase photoluminescence and ion mobility measurements it is concluded that the inclusion of dispersion corrections does not always yield structures that are in agreement with the experimental findings.

13.
J Chem Phys ; 157(5): 054106, 2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35933207

RESUMEN

Molecular rotations and vibrations have been extensively studied by chemists for decades, both experimentally using spectroscopic methods and theoretically with the help of quantum chemistry. However, the theoretical investigation of molecular rotations and vibrations in strong magnetic fields requires computationally more demanding tools. As such, proper calculations of rotational and vibrational spectra were not feasible up until very recently. In this work, we present rotational and vibrational spectra for two small linear molecules, H2 and LiH, in strong magnetic fields. By treating the nuclei as classical particles, trajectories for rotations and vibrations are simulated from ab initio molecular dynamics. Born-Oppenheimer potential energy surfaces are calculated at the Hartree-Fock and MP2 levels of theory using London atomic orbitals to ensure gauge origin invariance. For the calculation of nuclear trajectories, a highly efficient Tajima propagator is introduced, incorporating the Berry curvature tensor accounting for the screening of nuclear charges.

14.
J Chem Theory Comput ; 18(6): 3747-3758, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35576504

RESUMEN

Excited-state calculations in finite magnetic fields are presented in the framework of spin-noncollinear linear-response time-dependent density functional theory. To ensure gauge-origin invariance, London atomic orbitals are employed throughout. An efficient implementation into the Turbomole package, which also includes the resolution of the identity approximation, allows for the investigation of excited states of large molecular systems. The implementation is used to investigate the magnetic circular dichroism spectra of sizable organometallic molecules such as a zinc tetraazaporphyrin with two fused naphthalene units, which is a molecule with 57 atoms.

15.
Chemistry ; 28(23): e202200478, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35254693

RESUMEN

The synthesis and characterisation of a homologous series of quinoid sulfur-containing imidazolyl-substituted heteroacenes is described. The optoelectronic and magnetic properties were investigated by UV/vis, fluorescence and EPR spectroscopy as well as quantum-chemical calculations, and were compared to those of the corresponding benzo congener. The room-temperature and atmospherically stable quinoids display strong absorption in the NIR region between 678 and 819 nm. The dithieno[3,2-b:2',3'-d]thiophene and the thieno[2',3':4,5]thieno[3,2-b]thieno[2,3-d]thiophene derivatives were EPR active at room temperature. For the latter, variable-temperature EPR spectroscopy revealed the presence of a thermally accessible triplet state, with a singlet-triplet separation of 14.1 kJ mol-1 .

16.
Dalton Trans ; 51(14): 5471-5479, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35266476

RESUMEN

Dinuclear gold(I) compounds are of great interest due to their aurophilic interactions that influence their photophysical properties. Herein, we showcase that gold-gold interactions can be influenced by tuning the electronic properties of the ligands. Therefore, various para substituted (R) N,N'-bis(2,6-dimethylphenyl)formamidinate ligands (pRXylForm; Xyl = 2,6-dimethylphenyl and Form = formamidinate) were treated with Au(tht)Cl (tht = tetrahydrothiophene) to give via salt metathesis the corresponding gold(I) compounds [pRXylForm2Au2] (R = -OMe, -Me, -Ph, -H, -SMe, and -CO2Me). All complexes showed intense luminescence properties at low temperatures. Alignment with the Hammett parameter σp revealed the trends in the 1H and 13C NMR spectra. These results showed the influence of the donor-acceptor abilities of different substituents on the ligand system which were confirmed with calculated orbital energies. Photophysical investigations showed their lifetimes in the millisecond range indicating phosphorescence processes and revealed a redshift with the decreasing donor ability of the substituents in the solid state.

17.
Phys Chem Chem Phys ; 24(7): 4576-4587, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35132429

RESUMEN

4,4-Bis(carbazol-9-yl)-2,2-biphenyl (CBP) is widely used as a host material in phosphorescent organic light-emitting diodes (PhOLEDs). In the present study, we simulate the absorption spectra of CBP in gas and condensed phases, respectively, using the efficient time-dependent long-range corrected tight-binding density functional theory (TD-LC-DFTB). The accuracy of the condensed-phase absorption spectra computed using the structures obtained from classical molecular dynamics (MD) and quantum mechanical/molecular mechanical (QM/MM) simulations is examined by comparison with the experimental absorption spectrum. It is found that the TD-LC-DFTB gas-phase spectrum is in good agreement with the GW-BSE spectrum, indicating TD-LC-DFTB is an accurate and robust method in calculating the excitation energies of CBP. For the condensed-phase spectrum, we find that the electrostatic embedding has a minor influence on the excitation energy. Computing accurate absorption spectra is a particular challenge since static and dynamic disorders have to be taken into account. The static disorder results from the molecular packing in the material, which leads to molecule deformations. Since these structural changes sensitively impact the excitation energies of the individual molecules, a proper representation of this static disorder indicates that a reasonable structural model of the material has been generated. The good agreement between computed and experimental absorption spectra is therefore an indicator for the structural model developed. Concerning dynamic disorder, we find that molecular changes occur on long timescales in the ns-regime, which requires the use of fast computation approaches to reach convergence. The structural models derived in this work are the basis for future studies of charge and exciton transfer in CBP and related materials, also concerning the degradation mechanisms of CBP-based PhOLEDs.

18.
ACS Omega ; 7(5): 4683-4693, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35155960

RESUMEN

The coordination chemistry of a ferrocene ligand with one bulky amidinate function attached to each ring toward two different coinage metal precursors was investigated. In dependence of the metal and the co-ligands, "ansa" type structures and non-bridged structures were obtained. Six different compounds are reported. In the "ansa" type structures, short Fe-M (M = Cu, Ag) distances were observed in the molecular structures in the solid state. However, theoretical calculations (DFT) did not reveal a stabilizing metal-metal interaction. Instead, dispersion interactions within the ligand and between the ligand and metal seem to represent the main stabilization forces.

19.
Front Chem ; 9: 746162, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34900932

RESUMEN

The GW approximation and the Bethe-Salpeter equation have been implemented into the Turbomole program package for computations of molecular systems in a strong, finite magnetic field. Complex-valued London orbitals are used as basis functions to ensure gauge-invariant computational results. The implementation has been benchmarked against triplet excitation energies of 36 small to medium-sized molecules against reference values obtained at the approximate coupled-cluster level (CC2 approximation). Finally, a spectacular change of colour from orange to green of the tetracene molecule is induced by applying magnetic fields between 0 and 9,000 T perpendicular to the molecular plane.

20.
J Chem Phys ; 155(20): 201101, 2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34852467

RESUMEN

As quantum-chemical calculations of molecules in static external magnetic fields are becoming increasingly popular, the description of molecular symmetry under such conditions is also becoming more and more relevant. Using group theory, a general scheme of identifying the molecular point group in an external magnetic field is constructed. For both point groups that are non-existent in the absence of a field (C∞ and C∞ h) and their double groups, the character tables are presented. General properties of all possible point groups are discussed, and it is mathematically proven that they are all Abelian.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...