Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202318038, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38881526

RESUMEN

A thin liquid film spread over the inner surface of a rapidly rotating vial creates an aerodynamic cushion on which one or multiple droplets of various liquids can levitate stably for days or even weeks. These levitating droplets can serve as wall-less ("airware") chemical reactors that can be merged without touching-by remote impulses-to initiate reactions or sequences of reactions at scales down to hundreds of nanomoles. Moreover, under external electric fields, the droplets can act as the world's smallest chemical printers, shedding regular trains of pL or even fL microdrops. In one modality, the levitating droplets operate as completely wireless aliquoting/titrating systems delivering pg quantities of reagents into the liquid in the rotating vial; in another modality, they print microdroplet arrays onto target surfaces. The "airware", levitated reactors are inexpensive to set up, remarkably stable to external disturbances and, for printing applications, require operating voltages much lower than in electrospray, electrowetting, or ink jet systems.

2.
Nature ; 625(7995): 508-515, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37967579

RESUMEN

Recent years have seen revived interest in computer-assisted organic synthesis1,2. The use of reaction- and neural-network algorithms that can plan multistep synthetic pathways have revolutionized this field1,3-7, including examples leading to advanced natural products6,7. Such methods typically operate on full, literature-derived 'substrate(s)-to-product' reaction rules and cannot be easily extended to the analysis of reaction mechanisms. Here we show that computers equipped with a comprehensive knowledge-base of mechanistic steps augmented by physical-organic chemistry rules, as well as quantum mechanical and kinetic calculations, can use a reaction-network approach to analyse the mechanisms of some of the most complex organic transformations: namely, cationic rearrangements. Such rearrangements are a cornerstone of organic chemistry textbooks and entail notable changes in the molecule's carbon skeleton8-12. The algorithm we describe and deploy at https://HopCat.allchemy.net/ generates, within minutes, networks of possible mechanistic steps, traces plausible step sequences and calculates expected product distributions. We validate this algorithm by three sets of experiments whose analysis would probably prove challenging even to highly trained chemists: (1) predicting the outcomes of tail-to-head terpene (THT) cyclizations in which substantially different outcomes are encoded in modular precursors differing in minute structural details; (2) comparing the outcome of THT cyclizations in solution or in a supramolecular capsule; and (3) analysing complex reaction mixtures. Our results support a vision in which computers no longer just manipulate known reaction types1-7 but will help rationalize and discover new, mechanistically complex transformations.


Asunto(s)
Algoritmos , Técnicas de Química Sintética , Ciclización , Redes Neurales de la Computación , Terpenos , Cationes/química , Bases del Conocimiento , Terpenos/química , Técnicas de Química Sintética/métodos , Productos Biológicos/síntesis química , Productos Biológicos/química , Reproducibilidad de los Resultados , Soluciones
3.
Adv Mater ; 35(29): e2211946, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36929040

RESUMEN

Efficient recycling of spent lithium-ion batteries (LIBs) is essential for making their numerous applications sustainable. Hydrometallurgy-based separation methods are an indispensable part of the recycling process but remain limited by the extraction efficiency and selectivity, and typically require numerous binary liquid-liquid extraction steps in which the capacity of the extracting organic phase or partition coefficient of extracted metals become an overall bottleneck. Herein, rotating reactors are described, in which the aqueous feed, organic extractant, and aqueous acceptor phases are all present in the same rotating vessel and can be vigorously stirred and emulsified without the coalescence of aqueous layers. In this arrangement, the extractant molecules are not equilibrated with the feed and, instead, "shuttle" between the feed/extractant and the extractant/acceptor interfaces multiple times, with each such molecule ultimately transferring approximately ten metal ions. This shuttling allows for using extractant concentrations much lower than in previous designs even for extremely concentrated feeds and, simultaneously, ensures unprecedented speed and selectivity of the one-pot processes. These experimental results are accompanied by theoretical considerations of the selectivity versus speed trends as well as discussion of parameters essential for system upscaling.

4.
J Am Chem Soc ; 143(4): 1807-1815, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33471520

RESUMEN

When an organometallic catalyst is tethered onto a nanoparticle and is embedded in a monolayer of longer ligands terminated in "gating" end-groups, these groups can control the access and orientation of the incoming substrates. In this way, a nonspecific catalyst can become enzyme-like: it can select only certain substrates from substrate mixtures and, quite remarkably, can also preorganize these substrates such that only some of their otherwise equivalent sites react. For a simple, copper-based click reaction catalyst and for gating ligands terminated in charged groups, both substrate- and site-selectivities are on the order of 100, which is all the more notable given the relative simplicity of the on-particle monolayers compared to the intricacy of enzymes' active sites. The strategy of self-assembling macromolecular, on-nanoparticle environments to enhance selectivities of "ordinary" catalysts presented here is extendable to other types of catalysts and gating based on electrostatics, hydrophobicity, and chirality, or the combinations of these effects. Rational design of such systems should be guided by theoretical models we also describe.

5.
Nature ; 588(7836): 83-88, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33049755

RESUMEN

Training algorithms to computationally plan multistep organic syntheses has been a challenge for more than 50 years1-7. However, the field has progressed greatly since the development of early programs such as LHASA1,7, for which reaction choices at each step were made by human operators. Multiple software platforms6,8-14 are now capable of completely autonomous planning. But these programs 'think' only one step at a time and have so far been limited to relatively simple targets, the syntheses of which could arguably be designed by human chemists within minutes, without the help of a computer. Furthermore, no algorithm has yet been able to design plausible routes to complex natural products, for which much more far-sighted, multistep planning is necessary15,16 and closely related literature precedents cannot be relied on. Here we demonstrate that such computational synthesis planning is possible, provided that the program's knowledge of organic chemistry and data-based artificial intelligence routines are augmented with causal relationships17,18, allowing it to 'strategize' over multiple synthetic steps. Using a Turing-like test administered to synthesis experts, we show that the routes designed by such a program are largely indistinguishable from those designed by humans. We also successfully validated three computer-designed syntheses of natural products in the laboratory. Taken together, these results indicate that expert-level automated synthetic planning is feasible, pending continued improvements to the reaction knowledge base and further code optimization.


Asunto(s)
Inteligencia Artificial , Productos Biológicos/síntesis química , Técnicas de Química Sintética/métodos , Química Orgánica/métodos , Programas Informáticos , Inteligencia Artificial/normas , Automatización/métodos , Automatización/normas , Bencilisoquinolinas/síntesis química , Bencilisoquinolinas/química , Técnicas de Química Sintética/normas , Química Orgánica/normas , Indanos/síntesis química , Indanos/química , Alcaloides Indólicos/síntesis química , Alcaloides Indólicos/química , Bases del Conocimiento , Lactonas/síntesis química , Lactonas/química , Macrólidos/síntesis química , Macrólidos/química , Reproducibilidad de los Resultados , Sesquiterpenos/síntesis química , Sesquiterpenos/química , Programas Informáticos/normas , Tetrahidroisoquinolinas/síntesis química , Tetrahidroisoquinolinas/química
6.
Nature ; 586(7827): 57-63, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32999483

RESUMEN

Recent years have witnessed increased interest in systems that are capable of supporting multistep chemical processes without the need for manual handling of intermediates. These systems have been based either on collections of batch reactors1 or on flow-chemistry designs2-4, both of which require considerable engineering effort to set up and control. Here we develop an out-of-equilibrium system in which different reaction zones self-organize into a geometry that can dictate the progress of an entire process sequence. Multiple (routinely around 10, and in some cases more than 20) immiscible or pairwise-immiscible liquids of different densities are placed into a rotating container, in which they experience a centrifugal force that dominates over surface tension. As a result, the liquids organize into concentric layers, with thicknesses as low as 150 micrometres and theoretically reaching tens of micrometres. The layers are robust, yet can be internally mixed by accelerating or decelerating the rotation, and each layer can be individually addressed, enabling the addition, sampling or even withdrawal of entire layers during rotation. These features are combined in proof-of-concept experiments that demonstrate, for example, multistep syntheses of small molecules of medicinal interest, simultaneous acid-base extractions, and selective separations from complex mixtures mediated by chemical shuttles. We propose that 'wall-less' concentric liquid reactors could become a useful addition to the toolbox of process chemistry at small to medium scales and, in a broader context, illustrate the advantages of transplanting material and/or chemical systems from traditional, static settings into a rotating frame of reference.

7.
Nat Commun ; 10(1): 1434, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30926819

RESUMEN

Mapping atoms across chemical reactions is important for substructure searches, automatic extraction of reaction rules, identification of metabolic pathways, and more. Unfortunately, the existing mapping algorithms can deal adequately only with relatively simple reactions but not those in which expert chemists would benefit from computer's help. Here we report how a combination of algorithmics and expert chemical knowledge significantly improves the performance of atom mapping, allowing the machine to deal with even the most mechanistically complex chemical and biochemical transformations. The key feature of our approach is the use of few but judiciously chosen reaction templates that are used to generate plausible "intermediate" atom assignments which then guide a graph-theoretical algorithm towards the chemically correct isomorphic mappings. The algorithm performs significantly better than the available state-of-the-art reaction mappers, suggesting its uses in database curation, mechanism assignments, and - above all - machine extraction of reaction rules underlying modern synthesis-planning programs.

8.
Angew Chem Int Ed Engl ; 55(20): 5904-37, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27062365

RESUMEN

Exactly half a century has passed since the launch of the first documented research project (1965 Dendral) on computer-assisted organic synthesis. Many more programs were created in the 1970s and 1980s but the enthusiasm of these pioneering days had largely dissipated by the 2000s, and the challenge of teaching the computer how to plan organic syntheses earned itself the reputation of a "mission impossible". This is quite curious given that, in the meantime, computers have "learned" many other skills that had been considered exclusive domains of human intellect and creativity-for example, machines can nowadays play chess better than human world champions and they can compose classical music pleasant to the human ear. Although there have been no similar feats in organic synthesis, this Review argues that to concede defeat would be premature. Indeed, bringing together the combination of modern computational power and algorithms from graph/network theory, chemical rules (with full stereo- and regiochemistry) coded in appropriate formats, and the elements of quantum mechanics, the machine can finally be "taught" how to plan syntheses of non-trivial organic molecules in a matter of seconds to minutes. The Review begins with an overview of some basic theoretical concepts essential for the big-data analysis of chemical syntheses. It progresses to the problem of optimizing pathways involving known reactions. It culminates with discussion of algorithms that allow for a completely de novo and fully automated design of syntheses leading to relatively complex targets, including those that have not been made before. Of course, there are still things to be improved, but computers are finally becoming relevant and helpful to the practice of organic-synthetic planning. Paraphrasing Churchill's famous words after the Allies' first major victory over the Axis forces in Africa, it is not the end, it is not even the beginning of the end, but it is the end of the beginning for the computer-assisted synthesis planning. The machine is here to stay.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...