Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612406

RESUMEN

Cardiovascular diseases (CVDs) are often linked to ageing and are the major cause of death worldwide. The declined proliferation of adult stem cells in the heart often impedes its regenerative potential. Thus, an investigation of the proliferative potential of adult human cardiac stem cells (hCSCs) might be of great interest for improving cell-based treatments of cardiovascular diseases. The application of human blood serum was already shown to enhance hCSC proliferation and reduce senescence. Here, the underlying signalling pathways of serum-mediated hCSC proliferation were studied. We are the first to demonstrate the involvement of the transcription factor NF-κB in the serum-mediated proliferative response of hCSCs by utilizing the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). RNA-Sequencing (RNA-Seq) revealed ATF6B, COX5B, and TNFRSF14 as potential targets of NF-κB that are involved in serum-induced hCSC proliferation.


Asunto(s)
Células Madre Adultas , Enfermedades Cardiovasculares , Adulto , Humanos , FN-kappa B , Suero , Envejecimiento
2.
Emerg Infect Dis ; 30(5): 934-940, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38666600

RESUMEN

To determine the kinetics of hepatitis E virus (HEV) in asymptomatic persons and to evaluate viral load doubling time and half-life, we retrospectively tested samples retained from 32 HEV RNA-positive asymptomatic blood donors in Germany. Close-meshed monitoring of viral load and seroconversion in intervals of ≈4 days provided more information about the kinetics of asymptomatic HEV infections. We determined that a typical median infection began with PCR-detectable viremia at 36 days and a maximum viral load of 2.0 × 104 IU/mL. Viremia doubled in 2.4 days and had a half-life of 1.6 days. HEV IgM started to rise on about day 33 and peaked on day 36; IgG started to rise on about day 32 and peaked on day 53. Although HEV IgG titers remained stable, IgM titers became undetectable in 40% of donors. Knowledge of the dynamics of HEV viremia is useful for assessing the risk for transfusion-transmitted hepatitis E.


Asunto(s)
Donantes de Sangre , Virus de la Hepatitis E , Hepatitis E , ARN Viral , Carga Viral , Viremia , Humanos , Hepatitis E/epidemiología , Hepatitis E/virología , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/inmunología , Masculino , Adulto , Inmunoglobulina M/sangre , Femenino , Inmunoglobulina G/sangre , Cinética , Persona de Mediana Edad , Infecciones Asintomáticas/epidemiología , Estudios Retrospectivos , Anticuerpos Antihepatitis/sangre , Alemania/epidemiología , Adulto Joven
3.
Artif Organs ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38553978

RESUMEN

BACKGROUND: Despite combined anticoagulation therapy consisting of a vitamin K antagonist and an antiplatelet agent, thromboembolic complications often occur in patients with a left ventricular assist device (LVAD). In addition, bleeding events are also common. Resistance to antiplatelet drugs is a well-known phenomenon; however, the utilization of laboratory chemistry testing for the presence of such resistance, and then switching therapy, is controversial. METHODS: We tested 132 patients with LVAD (HeartWare n = 57, HeartMate II n = 22, HeartMate 3 n = 53) on acetylsalicylic acid (ASA) therapy for resistance and followed them for a maximum of 7 years regarding pump thrombosis. Light transmission aggregometry (LTA) and impedance aggregometry (IPA) were performed for testing platelet function. RESULTS: We could show that patients with ASA resistance displayed an increased risk of pump thrombosis, regardless of the test used (LTA: OR = 6.20, CI [1.86-20.64], p = 0.003; IPA: OR = 12.14, CI [3.00-49.07], p < 0.001). In patients with a HeartMate 3, we could not detect any pump thrombosis associated with aspirin resistance. Furthermore, there was no significant difference in bleeding events between patients with ASA resistance and ASA responders. CONCLUSION: Laboratory testing of ASA resistance seems to be a good tool to detect an increased risk of pump thrombosis, at least for patients with a HeartWare or HeartMate II. The extent to which these thromboses can be prevented with a change of medication has to be investigated in further studies. No pump thrombosis was detected in patients with a HeartMate 3, and the question should be asked as to what constellation of underlying and concomitant diseases must be present to justify ASA therapy for these patients.

4.
Biomedicines ; 12(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38540185

RESUMEN

Desbuquois dysplasia type 2 (DBQD2) and spondylo-ocular syndrome (SOS) are autosomal recessive disorders affecting the extracellular matrix (ECM) and categorized as glycosaminoglycan (GAG) linkeropathies. Linkeropathies result from mutations within glycosyltransferases involved in the synthesis of the tetrasaccharide linker, a linker between the core protein of proteoglycan (PG) and GAG. DBQD2 and SOS are caused by the isolated mutations of the xylosyltransferase (XT) isoforms. In this work, we successfully generated XYLT1- as well as XYLT2-deficient GAG linkeropathy model systems in human dermal fibroblasts using a ribonucleoprotein-based CRISPR/Cas9-system. Furthermore, it was possible to generate a complete XYLT-knockdown. Short- and long-term XT activity deficiency led to the mutual reduction in all linker transferase-encoding genes, suggesting a potential multienzyme complex with mutual regulation. Fibroblasts compensated for ECM misregulation initially by overexpressing ECM through the TGFß1 signaling pathway, akin to myofibroblast differentiation patterns. The long-term reduction in one XT isoform induced a stress response, reducing ECM components. The isolated XYLT1-knockout exhibited α-smooth muscle actin overexpression, possibly partially compensated by unaltered XT-II activity. XYLT2-knockout leads to the reduction in both XT isoforms and a strong stress response with indications of oxidative stress, induced senescence and apoptotic cells. In conclusion, introducing XYLT-deficiency revealed temporal and isoform-specific regulatory differences.

5.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256034

RESUMEN

The ageing phenotype is strongly driven by the exhaustion of adult stem cells (ASCs) and the accumulation of senescent cells. Cardiovascular diseases (CVDs) and heart failure (HF) are strongly linked to the ageing phenotype and are the leading cause of death. As the human heart is considered as an organ with low regenerative capacity, treatments targeting the rejuvenation of human cardiac stem cells (hCSCs) are of great interest. In this study, the beneficial effects of human blood serum on proliferation and senescence of hCSCs have been investigated at the molecular level. We show the induction of a proliferation-related gene expression response by human blood serum at the mRNA level. The concurrent differential expression of the TGFß target and inhibitor genes indicates the participation of TGFß signalling in this context. Surprisingly, the application of TGFß1 as well as the inhibition of TGFß type I and type II receptor (TGFßRI/II) signalling strongly increased the proliferation of hCSCs. Likewise, both human blood serum and TGFß1 reduced the senescence in hCSCs. The protective effect of serum on senescence in hCSCs was enhanced by simultaneous TGFßRI/II inhibition. These results strongly indicate a dual role of TGFß signalling in terms of the serum-mediated effects on hCSCs. Further analysis via RNA sequencing (RNA-Seq) revealed the participation of Ras-inactivating genes wherefore a prevention of hyperproliferation upon serum-treatment in hCSCs via TGFß signalling and Ras-induced senescence is suggested. These insights may improve treatments of heart failure in the future.


Asunto(s)
Células Madre Adultas , Insuficiencia Cardíaca , Adulto , Humanos , Suero , Insuficiencia Cardíaca/genética , Factor de Crecimiento Transformador beta , Proliferación Celular , Proteína Smad2
6.
Biochimie ; 218: 127-136, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37689257

RESUMEN

Xylosyltransferase-I and -II (XT-I, -II) possess a central role during the glycosylation of proteoglycans (PGs). They catalyze the formation of an O-glycosidic bond between the xylosyl residue of uridinediphosphate-xylose and the core protein of a PG. Thereafter, three following glycosyltransferases lead to the generation of a tetrasaccharide linker, which connects the PG core protein to the respective glycosaminoglycan. The selective quantification of XT-I and XT-II activity is of biological and clinical interest due to their association with fibrotic processes and skeletal dysplasia. There is no assay available to date that simultaneously determines the activity of the two XT isoforms. Although an XT-I selective UPLC MS/MS-based assay was published by Fischer et al., in 2021, the determination of XT-II activity can only be performed simultaneously by the improved assay presented here. To establish the assay, two synthetic peptides, selectively xylosylated by the respective isoform, were identified and the associated measurement parameters for the mass spectrometer were optimized. In addition, the quantitative range of the xylosylated peptides were validated, and the incubation time of the enzyme reaction was optimized for cell culture samples and human sera. The specific enzyme kinetics (KM and Vmax) of the respective XT isoform for the two peptides were also determined. Subsequently, a mathematical model was developed, allowing the simultaneous determination of XT-I and XT-II activity from the chromatographic results. Summarized, a mass spectrometric method suitable for the simultaneous analysis of XT-I and XT-II activity in cell culture lysates, supernatants and human sera was successfully developed.


Asunto(s)
Pentosiltransferasa , UDP Xilosa Proteína Xilosiltransferasa , Humanos , Pentosiltransferasa/química , Espectrometría de Masas en Tándem , Cromatografía Liquida , Cromatografía Líquida con Espectrometría de Masas , Isoformas de Proteínas , Péptidos
7.
Biomedicines ; 11(10)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37893046

RESUMEN

Previous studies revealed a link between inflammation and overactivation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling in syndromes associated with aging. Pseudoxanthoma elasticum (PXE), a rare autosomal-recessive disorder, arises from mutations in ATP-binding cassette subfamily C member 6 (ABCC6). On a molecular level, PXE shares similarities with Hutchinson-Gilford progeria syndrome, such as increased activity of senescence-associated- beta-galactosidase or high expression of inflammatory factors. Thus, this study's aim was the evaluation of activated STAT3 and the influence of JAK1/2-inhibitor baricitinib (BA) on inflammatory processes such as the complement system in PXE. Analysis of activation of STAT3 was performed by immunofluorescence and Western blot, while inflammatory processes and complement system factors were determined based on mRNA expression and protein level. Our results assume overactivation of JAK/STAT3 signaling, increased expression levels of several complement factors and high C3 protein concentration in the sera of PXE patients. Supplementation with BA reduces JAK/STAT3 activation and partly reduces inflammation as well as the gene expression of complement factors belonging to the C1 complex and C3 convertase in PXE fibroblasts. Our results indicate a link between JAK/STAT3 signaling and complement activation contributing to the proinflammatory phenotype in PXE fibroblasts.

8.
Microorganisms ; 11(9)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37764194

RESUMEN

An experimental study by the Paul-Ehrlich Institute (PEI) demonstrated that temperatures between 35 and 37 °C are too high for the growth of some bacterial strains (e.g., Pseudomonas fluorescens), leading to false negative results. Thus, the question of whether it is necessary to adapt incubation temperatures for the microbiological control of blood products, especially platelet concentrates (PCs), to enhance safety and regulatory compliance has arisen. In order to further elucidate this issue, the growth capability of different bacterial strains of interest in PCs and the detection efficacy of cultivation of these at different incubation temperatures must be taken into account. Therefore, we inoculated PCs with 46 different strains (3-6 PCs from different donors per strain) from different origins (PC isolates, reference strains) and stored PCs at 20-22 °C under constant agitation. On day three of storage, the inoculated PCs were sampled; aerobic and anaerobic culture bottles (BacT/Alert AST/NST) were each inoculated with 5 mL of sample, and culture bottles were incubated at 25 and 35 °C using the automated BacT/Alert Dual-temperature system. Bacterial proliferation was enumerated using a colony-forming assay. All strains of Enterobacteriacae (n = 5), Staphy-lococcus spp. (n = 11), Streptococcus spp. (n = 5), and Bacillus spp. (n = 4) and most Pseudomonas aeruginosa strains (4 of 5) tested showed the capability to grow in most inoculated PCs, revealing a faster time to detection (TTD) at an incubation temperature of 35 °C. The tested Pseudomonas putida (n = 3) strains showed a noticeably reduced capability to grow in PCs. Nonetheless, those with a notable growth capability revealed a faster TTD at an incubation temperature of 35 °C. Only one of the four Pseudomonas fluorescens strains tested (strain ATCC 13525) was able to grow in PCs, showing a faster TTD at an incubation temperature of 25 °C but also detection at 35 °C. The commonly detected bacteria involved in the bacterial contamination of PCs showed a superior TTD at 35 °C incubation. Only one P. fluorescens strain showed superior growth at 25 °C; however, the microbiological control at 35 °C did not fail to identify this contamination. In conclusion, the use of PC screening using a dual-temperature setting for microbiological control is presently not justified according to the observed kinetics.

9.
Cells ; 12(17)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37681923

RESUMEN

Platelets, the smallest cells in human blood, known for their role in primary hemostasis, are also able to interact with pathogens and play a crucial role in the immune response. In severe coronavirus disease 2019 (COVID-19) cases, platelets become overactivated, resulting in the release of granules, exacerbating inflammation and contributing to the cytokine storm. This study aims to further elucidate the role of platelets in COVID-19 progression and to identify predictive biomarkers for disease outcomes. A comparative proteome analysis of highly purified platelets from critically diseased COVID-19 patients with different outcomes (survivors and non-survivors) and age- and sex-matched controls was performed. Platelets from critically diseased COVID-19 patients exhibited significant changes in the levels of proteins associated with protein folding. In addition, a number of proteins with isomerase activity were found to be more highly abundant in patient samples, apparently exerting an influence on platelet activity via the non-genomic properties of the glucocorticoid receptor (GR) and the nuclear factor κ-light-chain-enhancer of activated B cells (NFκB). Moreover, carbonic anhydrase 1 (CA-1) was found to be a candidate biomarker in platelets, showing a significant increase in COVID-19 patients.


Asunto(s)
Plaquetas , COVID-19 , Humanos , Proteoma , Linfocitos B , Síndrome de Liberación de Citoquinas
10.
PLoS One ; 18(5): e0286334, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37235555

RESUMEN

Arthrofibrosis following total knee arthroplasty is a fibroproliferative joint disorder marked by dysregulated biosynthesis of extracellular matrix proteins, such as collagens and proteoglycans. The underlying cellular events remain incompletely understood. Myofibroblasts are highly contractile matrix-producing cells characterized by increased alpha-smooth muscle actin expression and xylosyltransferase-I (XT-I) secretion. Human XT-I has been identified as a key mediator of arthrofibrotic remodeling. Primary fibroblasts from patients with arthrofibrosis provide a useful in vitro model to identify and characterize disease regulators and potential therapeutic targets. This study aims at characterizing primary synovial fibroblasts from arthrofibrotic tissues (AFib) regarding their molecular and cellular phenotype by utilizing myofibroblast cell culture models. Compared to synovial control fibroblasts (CF), AFib are marked by enhanced cell contractility and a higher XT secretion rate, demonstrating an increased fibroblast-to-myofibroblast transition rate during arthrofibrosis. Histochemical assays and quantitative gene expression analysis confirmed higher collagen and proteoglycan expression and accumulation in AFib compared to CF. Furthermore, fibrosis-based gene expression profiling identified novel modifier genes in the context of arthrofibrosis remodeling. In summary, this study revealed a unique profibrotic phenotype in AFib that resembles some traits of other fibroproliferative diseases and can be used for the future development of therapeutic interventions.


Asunto(s)
Fibrilación Atrial , Artropatías , Humanos , Fibrilación Atrial/metabolismo , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Actinas/genética , Actinas/metabolismo
11.
Biomolecules ; 13(4)2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37189419

RESUMEN

Ectopic calcification and dysregulated extracellular matrix remodeling are prominent hallmarks of the complex heterogenous pathobiochemistry of pseudoxanthoma elasticum (PXE). The disease arises from mutations in ABCC6, an ATP-binding cassette transporter expressed predominantly in the liver. Neither its substrate nor the mechanisms by which it contributes to PXE are completely understood. The fibroblasts isolated from PXE patients and Abcc6-/- mice were subjected to RNA sequencing. A group of matrix metalloproteinases (MMPs) clustering on human chromosome 11q21-23, respectively, murine chromosome 9, was found to be overexpressed. A real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay and immunofluorescent staining confirmed these findings. The induction of calcification by CaCl2 resulted in the elevated expression of selected MMPs. On this basis, the influence of the MMP inhibitor Marimastat (BB-2516) on calcification was assessed. PXE fibroblasts (PXEFs) exhibited a pro-calcification phenotype basally. PXEF and normal human dermal fibroblasts responded with calcium deposit accumulation and the induced expression of osteopontin to the addition of Marimastat to the calcifying medium. The raised MMP expression in PXEFs and during cultivation with calcium indicates a correlation of ECM remodeling and ectopic calcification in PXE pathobiochemistry. We assume that MMPs make elastic fibers accessible to controlled, potentially osteopontin-dependent calcium deposition under calcifying conditions.


Asunto(s)
Calcinosis , Seudoxantoma Elástico , Humanos , Ratones , Animales , Seudoxantoma Elástico/genética , Seudoxantoma Elástico/metabolismo , Osteopontina/metabolismo , Calcio/metabolismo , Calcinosis/metabolismo , Fenotipo , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética
12.
Front Biosci (Landmark Ed) ; 28(3): 55, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-37005749

RESUMEN

BACKGROUND: Pseudoxanthoma elasticum (PXE) is a rare autosomal recessive disorder caused by mutations in the ATP-binding cassette sub-family C member 6 (ABCC6) gene. Patients with PXE show molecular and clinical characteristics of known premature aging syndromes, such as Hutchinson-Gilford progeria syndrome (HGPS). Nevertheless, PXE has only barely been discussed against the background of premature aging, although a detailed characterization of aging processes in PXE could contribute to a better understanding of its pathogenesis. Thus, this study was performed to evaluate whether relevant factors which are known to play a role in accelerated aging processes in HGPS pathogenesis are also dysregulated in PXE. METHODS: Primary human dermal fibroblasts from healthy donors (n = 3) and PXE patients (n = 3) and were cultivated under different culture conditions as our previous studies point towards effects of nutrient depletion on PXE phenotype. Gene expression of lamin A, lamin C, nucleolin, farnesyltransferase and zinc metallopeptidase STE24 were determined by quantitative real-time polymerase chain reaction. Additionally, protein levels of lamin A, C and nucleolin were evaluated by immunofluorescence and the telomere length was analyzed. RESULTS: We could show a significant decrease of lamin A and C gene expression in PXE fibroblasts under nutrient depletion compared to controls. The gene expression of progerin and farnesyltransferase showed a significant increase in PXE fibroblasts when cultivated in 10% fetal calf serum (FCS) compared to controls. Immunofluorescence microscopy of lamin A/C and nucleolin and mRNA expression of zinc metallopeptidase STE24 and nucleolin showed no significant changes in any case. The determination of the relative telomere length showed significantly longer telomeres for PXE fibroblasts compared to controls when cultivated in 10% FCS. CONCLUSIONS: These data indicate that PXE fibroblasts possibly undergo a kind of senescence which is independent of telomere damage and not triggered by defects of the nuclear envelope or nucleoli deformation.


Asunto(s)
Envejecimiento Prematuro , Progeria , Seudoxantoma Elástico , Humanos , Progeria/genética , Progeria/metabolismo , Progeria/patología , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/metabolismo , Envejecimiento Prematuro/patología , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Seudoxantoma Elástico/genética , Seudoxantoma Elástico/metabolismo , Seudoxantoma Elástico/patología , Farnesiltransferasa/metabolismo , Metaloproteasas/metabolismo , Zinc/metabolismo , Fibroblastos/metabolismo
13.
Platelets ; 34(1): 2184183, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36883692

RESUMEN

Platelets play a critical role in immune response. Coronavirus disease 2019 (COVID-19) patients with a severe course often show pathological coagulation parameters including thrombocytopenia, and at the same time the proportion of immature platelets increases. In this study, the platelet count and the immature platelet fraction (IPF) of hospitalized patients with different oxygenation requirements was investigated daily over a course of 40 days. In addition, the platelet function of COVID-19 patients was analyzed. It was found that the number of platelets in patients with the most severe course (intubation and extracorporeal membrane oxygenation (ECMO)) was significantly lower (111.5 ∙ 106 /mL) than in the other groups (mild (no intubation, no ECMO): 203.5 ∙ 106 /mL, p < .0001, moderate (intubation, no ECMO): 208.0 ∙ 106 /mL, p < .0001). IPF tended to be elevated (10.9%). Platelet function was reduced. Differentiation by outcome revealed that the deceased patients had a highly significant lower platelet count and higher IPF (97.3 ∙ 106 /mL, p < .0001, 12.2%, p = .0003).


What is the context? Pathological coagulation is a feature of severe cases of COVID-19, with both bleeding complications and thrombosis. Patients with severe COVID-19 are frequently treated with extracorporeal membrane oxygenation (ECMO), which is often associated with bleeding complications. Platelets play an important role in blood clotting. The proportion of immature platelets has been characterized as hyperreactive and associated with high prothrombotic activity. In addition, they are discussed as predictors of COVID-19 disease severity.What is new? In grading the severity of disease in our patient cohort, we consider the required oxygenation measures. Thus, the focus is on severe cases requiring intubation and ECMO compared to moderate (intubation, no ECMO) and mild (no intubation, no ECMO) cases.What is the impact? This study focuses on severely ill patients who require ECMO treatment. Therefore, this study provides further evidence to use immature platelet fraction to predict the outcome of severe COVID-19 courses.


Asunto(s)
COVID-19 , Trombocitopenia , Humanos , Plaquetas , Trombocitopenia/etiología , Recuento de Plaquetas , Coagulación Sanguínea
14.
Biomedicines ; 11(2)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36830996

RESUMEN

The human xylosyltransferase isoform XT-I catalyzes the initial step in proteoglycan biosynthesis and represents a biomarker of myofibroblast differentiation. Furthermore, XT-I overexpression is associated with fibrosis, whereby a fibrotic process initially develops from a dysregulated wound healing. In a physiologically wound healing process, extracellular matrix-producing myofibroblasts enter acute senescence to protect against fibrosis. The aim of this study was to determine the role of XT-I in acute senescent proto-myofibroblasts. Normal human dermal fibroblasts were seeded in a low cell density to promote myofibroblast differentiation and treated with H2O2 to induce acute senescence. Initiation of the acute senescence program in human proto-myofibroblasts resulted in a suppression of XYLT mRNA expression compared to the control, whereby the isoform XYLT1 was more affected than XYLT2. Moreover, the XT-I protein expression and enzyme activity were also reduced in H2O2-treated cells compared to the control. The examination of extracellular matrix remodeling revealed reduced expression of collagen I, fibronectin and decorin. In summary, acute senescent proto-myofibroblasts formed an anti-fibrotic phenotype, and suppression of XT-I during the induction process of acute senescence significantly contributed to subsequent ECM remodeling. XT-I therefore plays an important role in the switch between physiological and pathological wound healing.

15.
Clin Res Cardiol ; 112(11): 1506-1516, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35994091

RESUMEN

BACKGROUND: We report the results of a prospective study on the immunogenicity of a 3rd dose of BNT162b2 in thoracic organ recipients with no or minimal response following a two-dose BNT162b2 vaccination scheme. METHODS: A total of 243 transplant recipients received a homologue 3rd dose. Anti-SARS-CoV2-immunoglobulins (IgGs) were monitored immediately before (T1), 4 weeks (T2) as well as 2 and 4 months after the 3rd dose. Neutralizing antibody capacity (NAC) was determined at T2. To reveal predictors for detectable humoral response, patients were divided into a positive response group (n = 129) based on the combined criteria of IgGs and NAC above the defined cut-offs at T2-and a group with negative response (n = 114), with both, IgGs and NAC beyond the cut-offs. RESULTS: The 3rd dose induced a positive humoral response in 53% of patients at T2, 47% were still non-responsive. Sero-positivity was significantly stronger in patients who presented with weak, but detectable IgGs already prior to the booster (T1), when compared to those with no detectable response at T1. Multivariable analysis identified age > 55 years, a period since transplantation < 2 years, a reduced glomerular filtration rate, a triple immunosuppressive regimen, and the use of tacrolimus and of mycophenolate as independent risk factors for lack of humoral response. CONCLUSIONS: Our data indicate that a lack of immunogenicity is linked to the type and extent of maintenance immunosuppression. The necessity of the cumulative immunosuppressive regimen might individually be questioned and possibly be reduced to enhance the chance of an immune response following an additional booster dose.


Asunto(s)
COVID-19 , Vacunas , Humanos , Persona de Mediana Edad , Receptores de Trasplantes , Vacuna BNT162 , COVID-19/epidemiología , COVID-19/prevención & control , Estudios Prospectivos , Inmunosupresores , Anticuerpos Neutralizantes
16.
PLoS One ; 17(12): e0279195, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36525449

RESUMEN

Seroprevalence studies can contribute to a better assessment of the actual incidence of infection. Since long-term data for Germany are lacking, we determined the seroprevalence of immunoglobulin G (IgG) antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in residual plasma samples of 3,759 German regular blood donors between July 2020 and June 2021. Over almost the entire study period, the incidences determined based on our data were higher than those officially reported by the Robert Koch Institute, the public health institute in Germany. Using our serological testing strategy, we retrospectively detected natural infection in 206/3,759 (5.48%; 95% confidence interval (CI): 4.77-6.25) individuals. The IgG seroprevalence ranked from 5.15% (95% CI: 3.73-6.89) in Lower Saxony to 5.62% (95% CI: 4.57-6.84) in North Rhine Westphalia. The analyses of follow-up samples of 88 seropositive blood donors revealed a comparable fast decay of binding and neutralizing anti-SARS-CoV-2 IgG antibodies. The antibody avidity remained at a low level throughout the whole follow-up period of up to 181 days. Interestingly, female donors seem to express a stronger and longer lasting humoral immunity against the new coronavirus when compared to males. Conclusion: Overall, our data emphasizes that seroprevalence measurements can and should be used to understand the true incidence of infection better. Further characterization of follow-up samples from seropositive donors indicated rapid antibody waning with sex-specific differences concerning the strength and persistence of humoral immune response.


Asunto(s)
Donantes de Sangre , COVID-19 , Inmunidad Humoral , Femenino , Humanos , Masculino , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/epidemiología , Inmunoglobulina G , Estudios Retrospectivos , SARS-CoV-2 , Estudios Seroepidemiológicos , Alemania
17.
Biomedicines ; 10(11)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36359389

RESUMEN

Chronic inflammation and excessive synthesis of extracellular matrix components, such as proteoglycans (PG), by fibroblast- or macrophage-derived myofibroblasts are the hallmarks of fibrotic diseases, including systemic sclerosis (SSc). Human xylosyltransferase-I (XT-I), which is encoded by the gene XYLT1, is the key enzyme that is involved in PG biosynthesis. Increased cellular XYLT1 expression and serum XT-I activity were measured in SSc. Nothing is known so far about the regulation of XT-I in immune cells, and their contribution to the increase in measurable serum XT-I activity. We utilized an in vitro model, with primary human CD14+CD16+ monocyte-derived macrophages (MΦ), in order to investigate the role of macrophage polarization on XT-I regulation. The MΦ generated were polarized towards two macrophage phenotypes that were associated with SSc, which were classified as classical pro-inflammatory (M1-like), and alternative pro-fibrotic (M2-like) MΦ. The fully characterized M1- and M2-like MΦ cultures showed differential XT-I gene and protein expressions. The fibrotic M2-like MΦ cultures exhibited higher XT-I secretion, as well as increased expression of myofibroblast marker α-smooth muscle actin, indicating the onset of macrophage-to-myofibroblast transition (MMT). Thus, we identified XT-I as a novel macrophage polarization marker for in vitro generated M1- and M2-like MΦ subtypes, and broadened the view of XT-I as a myofibroblast marker in the process of MMT.

18.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361720

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive and most common malignant brain tumor with poor patient survival despite therapeutic intervention. On the cellular level, GBM comprises a rare population of glioblastoma stem cells (GSCs), driving therapeutic resistance, invasion, and recurrence. GSCs have thus come into the focus of therapeutic strategies, although their targeting remains challenging. In the present study, we took advantage of three GSCs-populations recently established in our lab to investigate key signaling pathways and subsequent therapeutic strategies targeting GSCs. We observed that NF-κB, a crucial transcription factor in GBM progression, was expressed in all CD44+/CD133+/Nestin+-GSC-populations. Exposure to TNFα led to activation of NF-κB-RELA and/or NF-κB-c-REL, depending on the GBM type. GSCs further expressed the proto-oncogene MYC family, with MYChigh GSCs being predominantly located in the tumor spheres ("GROW"-state) while NF-κB-RELAhigh GSCs were migrating out of the sphere ("GO"-state). We efficiently targeted GSCs by the pharmacologic inhibition of NF-κB using PTDC/Bortezomib or inhibition of MYC by KJ-Pyr-9, which significantly reduced GSC-viability, even in comparison to the standard chemotherapeutic drug temozolomide. As an additional cell-therapeutic strategy, we showed that NK cells could kill GSCs. Our findings offer new perspectives for developing efficient patient-specific chemo- and immunotherapy against GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , FN-kappa B/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Transducción de Señal , Inmunoterapia , Línea Celular Tumoral
19.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36077021

RESUMEN

Tissue regeneration substantially relies on the functionality of tissue-resident endogenous adult stem cell populations. However, during aging, a progressive decline in organ function and regenerative capacities impedes endogenous repair processes. Especially the adult human heart is considered as an organ with generally low regenerative capacities. Interestingly, beneficial effects of systemic factors carried by young blood have been described in diverse organs including the heart, brain and skeletal muscle of the murine system. Thus, the interest in young blood or blood components as potential therapeutic agents to target age-associated malignancies led to a wide range of preclinical and clinical research. However, the translation of promising results from the murine to the human system remains difficult. Likewise, the establishment of adequate cellular models could help to study the effects of human blood plasma on the regeneration of human tissues and particularly the heart. Facing this challenge, this review describes the current knowledge of blood plasma-mediated protection and regeneration of aging tissues. The current status of preclinical and clinical research examining blood borne factors that act in stem cell-based tissue maintenance and regeneration is summarized. Further, examples of cellular model systems for a more detailed examination of selected regulatory pathways are presented.


Asunto(s)
Células Madre Adultas , Células Madre , Anciano , Envejecimiento/fisiología , Animales , Humanos , Ratones , Músculo Esquelético/fisiología , Células Madre/fisiología , Cicatrización de Heridas
20.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36012482

RESUMEN

Mutations in ABCC6, an ATP-binding cassette transporter with a so far unknown substrate mainly expressed in the liver and kidney, cause pseudoxanthoma elasticum (PXE). Symptoms of PXE in patients originate from the calcification of elastic fibers in the skin, eye, and vessels. Previous studies suggested an involvement of ABCC6 in cholesterol and lipid homeostasis. The intention of this study was to examine the influence of ABCC6 deficiency during adipogenic differentiation of human bone marrow-derived stem cells (hMSCs). Induction of adipogenic differentiation goes along with significantly elevated ABCC6 gene expression in mature adipocytes. We generated an ABCC6-deficient cell culture model using clustered regulatory interspaced short palindromic repeat Cas9 (CRISPR-Cas9) system to clarify the role of ABCC6 in lipid homeostasis. The lack of ABCC6 in hMSCs does not influence gene expression of differentiation markers in adipogenesis but results in a decreased triglyceride content in cell culture medium. Protein and gene expression analysis of mature ABCC6-deficient adipocytes showed diminished intra- and extra-cellular lipolysis, release of lipids, and fatty acid neogenesis. Therefore, our results demonstrate impaired lipid trafficking in adipocytes due to ABCC6 deficiency, highlighting adipose tissue and peripheral lipid metabolism as a relevant target for uncovering systemic PXE pathogenesis.


Asunto(s)
Células Madre Mesenquimatosas , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Seudoxantoma Elástico , Adipocitos/metabolismo , Colesterol/metabolismo , Homeostasis , Humanos , Células Madre Mesenquimatosas/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Seudoxantoma Elástico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA