Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Hortic Res ; 6: 101, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31645956

RESUMEN

Pseudomonas syringae pv. actinidiae (Psa) biovar 3, a virulent, canker-inducing pathogen is an economic threat to the kiwifruit (Actinidia spp.) industry worldwide. The commercially grown diploid (2×) A. chinensis var. chinensis is more susceptible to Psa than tetraploid and hexaploid kiwifruit. However information on the genetic loci modulating Psa resistance in kiwifruit is not available. Here we report mapping of quantitative trait loci (QTLs) regulating resistance to Psa in a diploid kiwifruit population, derived from a cross between an elite Psa-susceptible 'Hort16A' and a resistant male breeding parent P1. Using high-density genetic maps and intensive phenotyping, we identified a single QTL for Psa resistance on Linkage Group (LG) 27 of 'Hort16A' revealing 16-19% phenotypic variance and candidate alleles for susceptibility and resistance at this loci. In addition, six minor QTLs were identified in P1 on distinct LGs, exerting 4-9% variance. Resistance in the F1 population is improved by additive effects from 'Hort16A' and P1 QTLs providing evidence that divergent genetic pathways interact to combat the virulent Psa strain. Two different bioassays further identified new QTLs for tissue-specific responses to Psa. The genetic marker at LG27 QTL was further verified for association with Psa resistance in diploid Actinidia chinensis populations. Transcriptome analysis of Psa-resistant and susceptible genotypes in field revealed hallmarks of basal defense and provided candidate RNA-biomarkers for screening for Psa resistance in greenhouse conditions.

3.
Plants (Basel) ; 8(7)2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31336644

RESUMEN

During analysis of kiwifruit derived from hybrids between the high vitamin C (ascorbic acid; AsA) species Actinidia eriantha and A. chinensis, we observed bimodal segregation of fruit AsA concentration suggesting major gene segregation. To test this hypothesis, we performed whole-genome sequencing on pools of hybrid genotypes with either high or low AsA fruit. Pool-GWAS (genome-wide association study) revealed a single Quantitative Trait Locus (QTL) spanning more than 5 Mbp on chromosome 26, which we denote as qAsA26.1. A co-dominant PCR marker was used to validate this association in four diploid (A. chinensis × A. eriantha) × A. chinensis backcross families, showing that the A. eriantha allele at this locus increases fruit AsA levels by 250 mg/100 g fresh weight. Inspection of genome composition and recombination in other A. chinensis genetic maps confirmed that the qAsA26.1 region bears hallmarks of suppressed recombination. The molecular fingerprint of this locus was examined in leaves of backcross validation families by RNA sequencing (RNASEQ). This confirmed strong allelic expression bias across this region as well as differential expression of transcripts on other chromosomes. This evidence suggests that the region harbouring qAsA26.1 constitutes a supergene, which may condition multiple pleiotropic effects on metabolism.

4.
Hortic Res ; 4: 17015, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28451438

RESUMEN

Understanding of genetic diversity and marker-trait relationships in pears (Pyrus spp.) forms an important part of gene conservation and cultivar breeding. Accessions of Asian and European pear species, and interspecific hybrids were planted in a common garden experiment. Genotyping-by-sequencing (GBS) was used to genotype 214 accessions, which were also phenotyped for fruit quality traits. A combination of selection scans and association analyses were used to identify signatures of selection. Patterns of genetic diversity, population structure and introgression were also investigated. About 15 000 high-quality SNP markers were identified from the GBS data, of which 25% and 11% harboured private alleles for European and Asian species, respectively. Bayesian clustering analysis suggested negligible gene flow, resulting in highly significant population differentiation (Fst=0.45) between Asian and European pears. Interspecific hybrids displayed an average of 55% and 45% introgression from their Asian and European ancestors, respectively. Phenotypic (firmness, acidity, shape and so on) variation between accessions was significantly associated with genetic differentiation. Allele frequencies at large-effect SNP loci were significantly different between genetic groups, suggesting footprints of directional selection. Selection scan analyses identified over 20 outlier SNP loci with substantial statistical support, likely to be subject to directional selection or closely linked to loci under selection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA