Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 626(7999): 574-582, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086421

RESUMEN

The intrinsic mechanisms that regulate neurotoxic versus neuroprotective astrocyte phenotypes and their effects on central nervous system degeneration and repair remain poorly understood. Here we show that injured white matter astrocytes differentiate into two distinct C3-positive and C3-negative reactive populations, previously simplified as neurotoxic (A1) and neuroprotective (A2)1,2, which can be further subdivided into unique subpopulations defined by proliferation and differential gene expression signatures. We find the balance of neurotoxic versus neuroprotective astrocytes is regulated by discrete pools of compartmented cyclic adenosine monophosphate derived from soluble adenylyl cyclase and show that proliferating neuroprotective astrocytes inhibit microglial activation and downstream neurotoxic astrocyte differentiation to promote retinal ganglion cell survival. Finally, we report a new, therapeutically tractable viral vector to specifically target optic nerve head astrocytes and show that raising nuclear or depleting cytoplasmic cyclic AMP in reactive astrocytes inhibits deleterious microglial or macrophage cell activation and promotes retinal ganglion cell survival after optic nerve injury. Thus, soluble adenylyl cyclase and compartmented, nuclear- and cytoplasmic-localized cyclic adenosine monophosphate in reactive astrocytes act as a molecular switch for neuroprotective astrocyte reactivity that can be targeted to inhibit microglial activation and neurotoxic astrocyte differentiation to therapeutic effect. These data expand on and define new reactive astrocyte subtypes and represent a step towards the development of gliotherapeutics for the treatment of glaucoma and other optic neuropathies.


Asunto(s)
Astrocitos , Neuroprotección , Adenilil Ciclasas/metabolismo , Astrocitos/citología , Astrocitos/enzimología , Astrocitos/metabolismo , Diferenciación Celular , Núcleo Celular/metabolismo , Supervivencia Celular , AMP Cíclico/metabolismo , Citoplasma/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Microglía/metabolismo , Microglía/patología , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Traumatismos del Nervio Óptico/terapia , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Glaucoma/patología , Glaucoma/terapia
2.
J Glaucoma ; 31(8): 634-638, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35696700

RESUMEN

PRCIS: Short-term use of the Balance Goggles System (BGS) in glaucoma patients was not associated with the observable changes in conventional ocular coherence tomography (OCT) imaging, but metabolic imaging using peripapillary flavoprotein fluorescence (FPF) may represent a useful adjuctive investigation. OBJECTIVE: To determine whether the intraocular pressure (IOP)-lowering effects of the BGS are accompanied by changes in retinal thickness measured by OCT, retinal vascular density measured by ocular coherence tomography-angiography (OCTA), or novel peripapillary metabolic profiling using FPF measured by a fundus camera. DESIGN: Prospective comparative case-series. SUBJECTS: Eight eyes from 8 patients with open angle glaucoma ranging from mild to severe. METHODS: In this prospective, single-center, open-label, nonrandomized, and single-arm study patients received a baseline evaluation including retinal imaging, then 1 hour of negative pressure application through the BGS, followed by repeat retinal imaging. Participants then used the BGS at home for 1 month and underwent a repeat evaluation at the conclusion of the trial. MAIN OUTCOME MEASURES: Changes in nerve fiber layer thickness, OCTA vascular parameters, and FPF scores. RESULTS: Mean baseline IOP was 18.0±3.1 mmHg and there was no significant change in IOP at follow-up. At 1 month compared with baseline, there was a statistically significant improvement in FPF optic nerve head rim scores (12.7±11.6 to 10.5±7.5; P =0.04). In addition, there was a trend toward an increase in retinal nerve fiber layer thickness after 1 month (69.5±14.2 to 72.0±13.7; P =0.1), but there were no statistically significant differences observable with any of the OCTA vascular parameters either at 1 hour or after 1 month. CONCLUSIONS: There were no significant changes observable using conventional OCT imaging after short-term use of the BGS, although metabolic imaging using FPF may be a useful potential biomarker to complement existing investigations. Additional studies are warranted to further investigate these changes.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Dispositivos de Protección de los Ojos , Glaucoma de Ángulo Abierto/diagnóstico , Humanos , Presión Intraocular , Proyectos Piloto , Estudios Prospectivos , Tomografía de Coherencia Óptica/métodos
3.
Elife ; 112022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35259089

RESUMEN

Many neurons in the adult central nervous system, including retinal ganglion cells (RGCs), degenerate and die after injury. Early axon protein and organelle trafficking failure is a key component in many neurodegenerative disorders yet changes to axoplasmic transport in disease models have not been quantified. We analyzed early changes in the protein 'transportome' from RGC somas to their axons after optic nerve injury and identified transport failure of an anterograde motor protein Kif5a early in RGC degeneration. We demonstrated that manipulating Kif5a expression affects anterograde mitochondrial trafficking in RGCs and characterized axon transport in Kif5a knockout mice to identify proteins whose axon localization was Kif5a-dependent. Finally, we found that knockout of Kif5a in RGCs resulted in progressive RGC degeneration in the absence of injury. Together with expression data localizing Kif5a to human RGCs, these data identify Kif5a transport failure as a cause of RGC neurodegeneration and point to a mechanism for future therapeutics.


Asunto(s)
Traumatismos del Nervio Óptico , Animales , Transporte Axonal , Axones/metabolismo , Cinesinas/genética , Ratones , Ratones Endogámicos C57BL , Regeneración Nerviosa , Células Ganglionares de la Retina/metabolismo
4.
PLoS One ; 15(12): e0242884, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33315889

RESUMEN

Loss of retinal ganglion cells (RGCs) in optic neuropathies results in permanent partial or complete blindness. Myocyte enhancer factor 2 (MEF2) transcription factors have been shown to play a pivotal role in neuronal systems, and in particular MEF2A knockout was shown to enhance RGC survival after optic nerve crush injury. Here we expanded these prior data to study bi-allelic, tri-allelic and heterozygous allele deletion. We observed that deletion of all MEF2A, MEF2C, and MEF2D alleles had no effect on RGC survival during development. Our extended experiments suggest that the majority of the neuroprotective effect was conferred by complete deletion of MEF2A but that MEF2D knockout, although not sufficient to increase RGC survival on its own, increased the positive effect of MEF2A knockout. Conversely, MEF2A over-expression in wildtype mice worsened RGC survival after optic nerve crush. Interestingly, MEF2 transcription factors are regulated by post-translational modification, including by calcineurin-catalyzed dephosphorylation of MEF2A Ser-408 known to increase MEF2A-dependent transactivation in neurons. However, neither phospho-mimetic nor phospho-ablative mutation of MEF2A Ser-408 affected the ability of MEF2A to promote RGC death in vivo after optic nerve injury. Together these findings demonstrate that MEF2 gene expression opposes RGC survival following axon injury in a complex hierarchy, and further support the hypothesis that loss of or interference with MEF2A expression might be beneficial for RGC neuroprotection in diseases such as glaucoma and other optic neuropathies.


Asunto(s)
Factores de Transcripción MEF2/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Células Ganglionares de la Retina/patología , Alelos , Animales , Recuento de Células , Humanos , Factores de Transcripción MEF2/deficiencia , Factores de Transcripción MEF2/genética , Ratones , Traumatismos del Nervio Óptico/genética , Mutación Puntual , Transducción de Señal
5.
Curr Biol ; 29(12): 1963-1975.e5, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31155355

RESUMEN

Following ocular trauma or in diseases such as glaucoma, irreversible vision loss is due to the death of retinal ganglion cell (RGC) neurons. Although strategies to replace these lost cells include stem cell replacement therapy, few differentiated stem cells turn into RGC-like neurons. Understanding the regulatory mechanisms of RGC differentiation in vivo may improve outcomes of cell transplantation by directing the fate of undifferentiated cells toward mature RGCs. Here, we report a new mechanism by which growth and differentiation factor-15 (GDF-15), a ligand in the transforming growth factor-beta (TGF-ß) superfamily, strongly promotes RGC differentiation in the developing retina in vivo in rodent retinal progenitor cells (RPCs) and in human embryonic stem cells (hESCs). This effect is in direct contrast to the closely related ligand GDF-11, which suppresses RGC-fate specification. We find these opposing effects are due in part to GDF-15's ability to specifically suppress Smad-2, but not Smad-1, signaling induced by GDF-11, which can be recapitulated by pharmacologic or genetic blockade of Smad-2 in vivo to increase RGC specification. No other retinal cell types were affected by GDF-11 knockout, but a slight reduction in photoreceptor cells was observed by GDF-15 knockout in the developing retina in vivo. These data define a novel regulatory mechanism of GDFs' opposing effects and their relevance in RGC differentiation and suggest a potential approach for advancing ESC-to-RGC cell-based replacement therapies.


Asunto(s)
Diferenciación Celular , Factor 15 de Diferenciación de Crecimiento/genética , Células Ganglionares de la Retina/fisiología , Animales , Factor 15 de Diferenciación de Crecimiento/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA