Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 56(8): 1644-1653, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39039281

RESUMEN

Individuals with ultrarare disorders pose a structural challenge for healthcare systems since expert clinical knowledge is required to establish diagnoses. In TRANSLATE NAMSE, a 3-year prospective study, we evaluated a novel diagnostic concept based on multidisciplinary expertise in Germany. Here we present the systematic investigation of the phenotypic and molecular genetic data of 1,577 patients who had undergone exome sequencing and were partially analyzed with next-generation phenotyping approaches. Molecular genetic diagnoses were established in 32% of the patients totaling 370 distinct molecular genetic causes, most with prevalence below 1:50,000. During the diagnostic process, 34 novel and 23 candidate genotype-phenotype associations were identified, mainly in individuals with neurodevelopmental disorders. Sequencing data of the subcohort that consented to computer-assisted analysis of their facial images with GestaltMatcher could be prioritized more efficiently compared with approaches based solely on clinical features and molecular scores. Our study demonstrates the synergy of using next-generation sequencing and phenotyping for diagnosing ultrarare diseases in routine healthcare and discovering novel etiologies by multidisciplinary teams.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Humanos , Femenino , Masculino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Niño , Alemania , Secuenciación del Exoma/métodos , Adolescente , Estudios de Asociación Genética/métodos , Pruebas Genéticas/métodos , Preescolar , Estudios Prospectivos , Adulto , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/diagnóstico , Lactante , Adulto Joven
2.
Res Sq ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38903062

RESUMEN

The most important factor that complicates the work of dysmorphologists is the significant phenotypic variability of the human face. Next-Generation Phenotyping (NGP) tools that assist clinicians with recognizing characteristic syndromic patterns are particularly challenged when confronted with patients from populations different from their training data. To that end, we systematically analyzed the impact of genetic ancestry on facial dysmorphism. For that purpose, we established the GestaltMatcher Database (GMDB) as a reference dataset for medical images of patients with rare genetic disorders from around the world. We collected 10,980 frontal facial images - more than a quarter previously unpublished - from 8,346 patients, representing 581 rare disorders. Although the predominant ancestry is still European (67%), data from underrepresented populations have been increased considerably via global collaborations (19% Asian and 7% African). This includes previously unpublished reports for more than 40% of the African patients. The NGP analysis on this diverse dataset revealed characteristic performance differences depending on the composition of training and test sets corresponding to genetic relatedness. For clinical use of NGP, incorporating non-European patients resulted in a profound enhancement of GestaltMatcher performance. The top-5 accuracy rate increased by +11.29%. Importantly, this improvement in delineating the correct disorder from a facial portrait was achieved without decreasing the performance on European patients. By design, GMDB complies with the FAIR principles by rendering the curated medical data findable, accessible, interoperable, and reusable. This means GMDB can also serve as data for training and benchmarking. In summary, our study on facial dysmorphism on a global sample revealed a considerable cross ancestral phenotypic variability confounding NGP that should be counteracted by international efforts for increasing data diversity. GMDB will serve as a vital reference database for clinicians and a transparent training set for advancing NGP technology.

3.
Nucleic Acids Res ; 52(W1): W148-W158, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38769069

RESUMEN

In the era of high throughput sequencing, special software is required for the clinical evaluation of genetic variants. We developed REEV (Review, Evaluate and Explain Variants), a user-friendly platform for clinicians and researchers in the field of rare disease genetics. Supporting data was aggregated from public data sources. We compared REEV with seven other tools for clinical variant evaluation. REEV (semi-)automatically fills individual ACMG criteria facilitating variant interpretation. REEV can store disease and phenotype data related to a case to use these for phenotype similarity measures. Users can create public permanent links for individual variants that can be saved as browser bookmarks and shared. REEV may help in the fast diagnostic assessment of genetic variants in a clinical as well as in a research context. REEV (https://reev.bihealth.org/) is free and open to all users and there is no login requirement.


Asunto(s)
Variación Genética , Programas Informáticos , Humanos , Fenotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Bases de Datos Genéticas
4.
Genes (Basel) ; 15(5)2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38790248

RESUMEN

The case report by Mabry et al. (1970) of a family with four children with elevated tissue non-specific alkaline phosphatase, seizures and profound developmental disability, became the basis for phenotyping children with the features that became known as Mabry syndrome. Aside from improvements in the services available to patients and families, however, the diagnosis and treatment of this, and many other developmental disabilities, did not change significantly until the advent of massively parallel sequencing. As more patients with features of the Mabry syndrome were identified, exome and genome sequencing were used to identify the glycophosphatidylinositol (GPI) biosynthesis disorders (GPIBDs) as a group of congenital disorders of glycosylation (CDG). Biallelic variants of the phosphatidylinositol glycan (PIG) biosynthesis, type V (PIGV) gene identified in Mabry syndrome became evidence of the first in a phenotypic series that is numbered HPMRS1-6 in the order of discovery. HPMRS1 [MIM: 239300] is the phenotype resulting from inheritance of biallelic PIGV variants. Similarly, HPMRS2 (MIM 614749), HPMRS5 (MIM 616025) and HPMRS6 (MIM 616809) result from disruption of the PIGO, PIGW and PIGY genes expressed in the endoplasmic reticulum. By contrast, HPMRS3 (MIM 614207) and HPMRS4 (MIM 615716) result from disruption of post attachment to proteins PGAP2 (HPMRS3) and PGAP3 (HPMRS4). The GPI biosynthesis disorders (GPIBDs) are currently numbered GPIBD1-21. Working with Dr. Mabry, in 2020, we were able to use improved laboratory diagnostics to complete the molecular diagnosis of patients he had originally described in 1970. We identified biallelic variants of the PGAP2 gene in the first reported HPMRS patients. We discuss the longevity of the Mabry syndrome index patients in the context of the utility of pyridoxine treatment of seizures and evidence for putative glycolipid storage in patients with HPMRS3. From the perspective of the laboratory innovations made that enabled the identification of the HPMRS phenotype in Dr. Mabry's patients, the need for treatment innovations that will benefit patients and families affected by developmental disabilities is clear.


Asunto(s)
Trastornos Congénitos de Glicosilación , Discapacidades del Desarrollo , Glicosilfosfatidilinositoles , Humanos , Discapacidades del Desarrollo/genética , Glicosilfosfatidilinositoles/genética , Trastornos Congénitos de Glicosilación/genética , Fenotipo , Masculino , Mutación , Femenino , Proteínas de la Membrana/genética , Manosiltransferasas
5.
Am J Med Genet A ; 194(9): e63641, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725242

RESUMEN

Next-generation phenotyping (NGP) can be used to compute the similarity of dysmorphic patients to known syndromic diseases. So far, the technology has been evaluated in variant prioritization and classification, providing evidence for pathogenicity if the phenotype matched with other patients with a confirmed molecular diagnosis. In a Nigerian cohort of individuals with facial dysmorphism, we used the NGP tool GestaltMatcher to screen portraits prior to genetic testing and subjected individuals with high similarity scores to exome sequencing (ES). Here, we report on two individuals with global developmental delay, pulmonary artery stenosis, and genital and limb malformations for whom GestaltMatcher yielded Cornelia de Lange syndrome (CdLS) as the top hit. ES revealed a known pathogenic nonsense variant, NM_133433.4: c.598C>T; p.(Gln200*), as well as a novel frameshift variant c.7948dup; p.(Ile2650Asnfs*11) in NIPBL. Our results suggest that NGP can be used as a screening tool and thresholds could be defined for achieving high diagnostic yields in ES. Training the artificial intelligence (AI) with additional cases of the same ethnicity might further increase the positive predictive value of GestaltMatcher.


Asunto(s)
Síndrome de Cornelia de Lange , Fenotipo , Humanos , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/patología , Masculino , Femenino , Niño , Nigeria , Preescolar , Proteínas de Ciclo Celular/genética , Secuenciación del Exoma , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Lactante
6.
Genes (Basel) ; 15(3)2024 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-38540429

RESUMEN

Genomic variant prioritization is crucial for identifying disease-associated genetic variations. Integrating facial and clinical feature analyses into this process enhances performance. This study demonstrates the integration of facial analysis (GestaltMatcher) and Human Phenotype Ontology analysis (CADA) within VarFish, an open-source variant analysis framework. Challenges related to non-open-source components were addressed by providing an open-source version of GestaltMatcher, facilitating on-premise facial analysis to address data privacy concerns. Performance evaluation on 163 patients recruited from a German multi-center study of rare diseases showed PEDIA's superior accuracy in variant prioritization compared to individual scores. This study highlights the importance of further benchmarking and future integration of advanced facial analysis approaches aligned with ACMG guidelines to enhance variant classification.


Asunto(s)
Enfermedades Raras , Humanos , Fenotipo , Enfermedades Raras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...