Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
1.
J Neurosci ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871463

RESUMEN

Inter-species comparisons are key to deriving an understanding of the behavioral and neural correlates of human cognition from animal models. We perform a detailed comparison of the strategies of female macaque monkeys to male and female humans on a variant of the Wisconsin Card Sort Test (WCST), a widely studied and applied task that provides a multi-attribute measure of cognitive function and depends on the frontal lobe. WCST performance requires the inference of a rule change given ambiguous feedback. We found that well-trained monkeys infer new rules three times more slowly than minimally instructed humans. Input-dependent Hidden Markov Model-Generalized Linear Models were fit to their choices, revealing hidden states akin to feature-based attention in both species. Decision processes resembled a Win-Stay Lose-Shift strategy with inter-species similarities as well as key differences. Monkeys and humans both test multiple rule hypotheses over a series of rule-search trials and perform inference-like computations to exclude candidate choice options. We quantitatively show that perseveration, random exploration and poor sensitivity to negative feedback account for the slower task-switching performance in monkeys.Significance Statement Advances in training and recording from animal models support the study of increasingly complex behaviors in non-humans. Before interpreting their neural computations as human-like, we must first ascertain whether their computational algorithms are human-like. We compared rapid rule-learning strategies of macaque monkeys and humans on a Wisconsin Card Sorting Test variant and found that monkeys are 3-4 times slower than humans at learning new rules. Model fits to choice behavior revealed that both species use qualitatively similar exploration strategies with different decision criteria. These differences produced distinct errors in monkeys that are similar to those observed in humans with prefrontal deficits. Our results generate detailed neural hypotheses and highlight the need for systematic inter-species behavioral and neural comparisons.

2.
Ann Neurol ; 95(6): 1205-1219, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38501317

RESUMEN

OBJECTIVE: The aim of this study was to investigate the cognitive effects of unilateral directional versus ring subthalamic nucleus deep brain stimulation (STN DBS) in patients with advanced Parkinson's disease. METHODS: We examined 31 participants who underwent unilateral STN DBS (left n = 17; right n = 14) as part of an National Institutes of Health (NIH)-sponsored randomized, double-blind, crossover study contrasting directional versus ring stimulation. All participants received unilateral DBS implants in the hemisphere more severely affected by motor parkinsonism. Measures of cognition included verbal fluency, auditory-verbal memory, and response inhibition. We used mixed linear models to contrast the effects of directional versus ring stimulation and implant hemisphere on longitudinal cognitive function. RESULTS: Crossover analyses showed no evidence for group-level changes in cognitive performance related to directional versus ring stimulation. Implant hemisphere, however, impacted cognition in several ways. Left STN participants had lower baseline verbal fluency than patients with right implants (t [20.66 = -2.50, p = 0.02]). Verbal fluency declined after left (p = 0.013) but increased after right STN DBS (p < 0.001), and response inhibition was faster following right STN DBS (p = 0.031). Regardless of hemisphere, delayed recall declined modestly over time versus baseline (p = 0.001), and immediate recall was unchanged. INTERPRETATION: Directional versus ring STN DBS did not differentially affect cognition. Similar to prior bilateral DBS studies, unilateral left stimulation worsened verbal fluency performance. In contrast, unilateral right STN surgery increased performance on verbal fluency and response inhibition tasks. Our findings raise the hypothesis that unilateral right STN DBS in selected patients with predominant right brain motor parkinsonism could mitigate declines in verbal fluency associated with the bilateral intervention. ANN NEUROL 2024;95:1205-1219.


Asunto(s)
Cognición , Estudios Cruzados , Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/efectos adversos , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Método Doble Ciego , Cognición/fisiología
3.
Elife ; 132024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334469

RESUMEN

Orbitofrontal cortex (OFC) is classically linked to inhibitory control, emotion regulation, and reward processing. Recent perspectives propose that the OFC also generates predictions about perceptual events, actions, and their outcomes. We tested the role of the OFC in detecting violations of prediction at two levels of abstraction (i.e., hierarchical predictive processing) by studying the event-related potentials (ERPs) of patients with focal OFC lesions (n = 12) and healthy controls (n = 14) while they detected deviant sequences of tones in a local-global paradigm. The structural regularities of the tones were controlled at two hierarchical levels by rules defined at a local (i.e., between tones within sequences) and at a global (i.e., between sequences) level. In OFC patients, ERPs elicited by standard tones were unaffected at both local and global levels compared to controls. However, patients showed an attenuated mismatch negativity (MMN) and P3a to local prediction violation, as well as a diminished MMN followed by a delayed P3a to the combined local and global level prediction violation. The subsequent P3b component to conditions involving violations of prediction at the level of global rules was preserved in the OFC group. Comparable effects were absent in patients with lesions restricted to the lateral PFC, which lends a degree of anatomical specificity to the altered predictive processing resulting from OFC lesion. Overall, the altered magnitudes and time courses of MMN/P3a responses after lesions to the OFC indicate that the neural correlates of detection of auditory regularity violation are impacted at two hierarchical levels of rule abstraction.


Asunto(s)
Corteza Auditiva , Potenciales Evocados Auditivos , Humanos , Potenciales Evocados Auditivos/fisiología , Estimulación Acústica/métodos , Electroencefalografía/métodos , Percepción Auditiva/fisiología , Corteza Prefrontal , Corteza Auditiva/fisiología
4.
Nat Commun ; 15(1): 215, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172140

RESUMEN

Enhanced memory for emotional experiences is hypothesized to depend on amygdala-hippocampal interactions during memory consolidation. Here we show using intracranial recordings from the human amygdala and the hippocampus during an emotional memory encoding and discrimination task increased awake ripples after encoding of emotional, compared to neutrally-valenced stimuli. Further, post-encoding ripple-locked stimulus similarity is predictive of later memory discrimination. Ripple-locked stimulus similarity appears earlier in the amygdala than in hippocampus and mutual information analysis confirms amygdala influence on hippocampal activity. Finally, the joint ripple-locked stimulus similarity in the amygdala and hippocampus is predictive of correct memory discrimination. These findings provide electrophysiological evidence that post-encoding ripples enhance memory for emotional events.


Asunto(s)
Consolidación de la Memoria , Vigilia , Humanos , Vigilia/fisiología , Hipocampo/fisiología , Amígdala del Cerebelo/fisiología , Emociones , Fenómenos Electrofisiológicos , Consolidación de la Memoria/fisiología
5.
Nat Commun ; 15(1): 637, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245516

RESUMEN

Contextual cues and prior evidence guide human goal-directed behavior. The neurophysiological mechanisms that implement contextual priors to guide subsequent actions in the human brain remain unclear. Using intracranial electroencephalography (iEEG), we demonstrate that increasing uncertainty introduces a shift from a purely oscillatory to a mixed processing regime with an additional ramping component. Oscillatory and ramping dynamics reflect dissociable signatures, which likely differentially contribute to the encoding and transfer of different cognitive variables in a cue-guided motor task. The results support the idea that prefrontal activity encodes rules and ensuing actions in distinct coding subspaces, while theta oscillations synchronize the prefrontal-motor network, possibly to guide action execution. Collectively, our results reveal how two key features of large-scale neural population activity, namely continuous ramping dynamics and oscillatory synchrony, jointly support rule-guided human behavior.


Asunto(s)
Encéfalo , Señales (Psicología) , Humanos , Encéfalo/fisiología , Ritmo Teta/fisiología , Electroencefalografía
6.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38216528

RESUMEN

Our brains extract structure from the environment and form predictions given past experience. Predictive circuits have been identified in wide-spread cortical regions. However, the contribution of medial temporal structures in predictions remains under-explored. The hippocampus underlies sequence detection and is sensitive to novel stimuli, sufficient to gain access to memory, while the amygdala to novelty. Yet, their electrophysiological profiles in detecting predictable and unpredictable deviant auditory events remain unknown. Here, we hypothesized that the hippocampus would be sensitive to predictability, while the amygdala to unexpected deviance. We presented epileptic patients undergoing presurgical monitoring with standard and deviant sounds, in predictable or unpredictable contexts. Onsets of auditory responses and unpredictable deviance effects were detected earlier in the temporal cortex compared with the amygdala and hippocampus. Deviance effects in 1-20 Hz local field potentials were detected in the lateral temporal cortex, irrespective of predictability. The amygdala showed stronger deviance in the unpredictable context. Low-frequency deviance responses in the hippocampus (1-8 Hz) were observed in the predictable but not in the unpredictable context. Our results reveal a distributed network underlying the generation of auditory predictions and suggest that the neural basis of sensory predictions and prediction error signals needs to be extended.


Asunto(s)
Corteza Auditiva , Humanos , Corteza Auditiva/fisiología , Lóbulo Temporal , Amígdala del Cerebelo , Encéfalo , Hipocampo , Estimulación Acústica , Percepción Auditiva/fisiología , Potenciales Evocados Auditivos/fisiología
7.
Brain Topogr ; 37(2): 287-295, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-36939988

RESUMEN

Electroencephalography (EEG) microstates are short successive periods of stable scalp field potentials representing spontaneous activation of brain resting-state networks. EEG microstates are assumed to mediate local activity patterns. To test this hypothesis, we correlated momentary global EEG microstate dynamics with the local temporo-spectral evolution of electrocorticography (ECoG) and stereotactic EEG (SEEG) depth electrode recordings. We hypothesized that these correlations involve the gamma band. We also hypothesized that the anatomical locations of these correlations would converge with those of previous studies using either combined functional magnetic resonance imaging (fMRI)-EEG or EEG source localization. We analyzed resting-state data (5 min) of simultaneous noninvasive scalp EEG and invasive ECoG and SEEG recordings of two participants. Data were recorded during the presurgical evaluation of pharmacoresistant epilepsy using subdural and intracranial electrodes. After standard preprocessing, we fitted a set of normative microstate template maps to the scalp EEG data. Using covariance mapping with EEG microstate timelines and ECoG/SEEG temporo-spectral evolutions as inputs, we identified systematic changes in the activation of ECoG/SEEG local field potentials in different frequency bands (theta, alpha, beta, and high-gamma) based on the presence of particular microstate classes. We found significant covariation of ECoG/SEEG spectral amplitudes with microstate timelines in all four frequency bands (p = 0.001, permutation test). The covariance patterns of the ECoG/SEEG electrodes during the different microstates of both participants were similar. To our knowledge, this is the first study to demonstrate distinct activation/deactivation patterns of frequency-domain ECoG local field potentials associated with simultaneous EEG microstates.


Asunto(s)
Mapeo Encefálico , Electrocorticografía , Humanos , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Cuero Cabelludo
8.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38124548

RESUMEN

Why does unilateral deep brain stimulation improve motor function bilaterally? To address this clinical observation, we collected parallel neural recordings from sensorimotor cortex (SMC) and the subthalamic nucleus (STN) during repetitive ipsilateral, contralateral, and bilateral hand movements in patients with Parkinson's disease. We used a cross-validated electrode-wise encoding model to map electromyography data to the neural signals. Electrodes in the STN encoded movement at a comparable level for both hands, whereas SMC electrodes displayed a strong contralateral bias. To examine representational overlap across the two hands, we trained the model with data from one condition (contralateral hand) and used the trained weights to predict neural activity for movements produced with the other hand (ipsilateral hand). Overall, between-hand generalization was poor, and this limitation was evident in both regions. A similar method was used to probe representational overlap across different task contexts (unimanual vs. bimanual). Task context was more important for the STN compared to the SMC indicating that neural activity in the STN showed greater divergence between the unimanual and bimanual conditions. These results indicate that SMC activity is strongly lateralized and relatively context-free, whereas the STN integrates contextual information with the ongoing behavior.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Corteza Sensoriomotora , Núcleo Subtalámico , Humanos , Núcleo Subtalámico/fisiología , Mano/fisiología , Movimiento/fisiología , Enfermedad de Parkinson/terapia , Estimulación Encefálica Profunda/métodos
9.
Nat Commun ; 14(1): 8520, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129440

RESUMEN

The signed value and unsigned salience of reward prediction errors (RPEs) are critical to understanding reinforcement learning (RL) and cognitive control. Dorsomedial prefrontal cortex (dMPFC) and insula (INS) are key regions for integrating reward and surprise information, but conflicting evidence for both signed and unsigned activity has led to multiple proposals for the nature of RPE representations in these brain areas. Recently developed RL models allow neurons to respond differently to positive and negative RPEs. Here, we use intracranially recorded high frequency activity (HFA) to test whether this flexible asymmetric coding strategy captures RPE coding diversity in human INS and dMPFC. At the region level, we found a bias towards positive RPEs in both areas which paralleled behavioral adaptation. At the local level, we found spatially interleaved neural populations responding to unsigned RPE salience and valence-specific positive and negative RPEs. Furthermore, directional connectivity estimates revealed a leading role of INS in communicating positive and unsigned RPEs to dMPFC. These findings support asymmetric coding across distinct but intermingled neural populations as a core principle of RPE processing and inform theories of the role of dMPFC and INS in RL and cognitive control.


Asunto(s)
Refuerzo en Psicología , Recompensa , Humanos , Corteza Prefrontal/fisiología , Encéfalo/fisiología , Aprendizaje
10.
Curr Biol ; 33(22): 4893-4904.e3, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37852264

RESUMEN

Contemporary models conceptualize spatial attention as a blinking spotlight that sequentially samples visual space. Hence, behavior fluctuates over time, even in states of presumed "sustained" attention. Recent evidence has suggested that rhythmic neural activity in the frontoparietal network constitutes the functional basis of rhythmic attentional sampling. However, causal evidence to support this notion remains absent. Using a lateralized spatial attention task, we addressed this issue in patients with focal lesions in the frontoparietal attention network. Our results revealed that frontoparietal lesions introduce periodic attention deficits, i.e., temporally specific behavioral deficits that are aligned with the underlying neural oscillations. Attention-guided perceptual sensitivity was on par with that of healthy controls during optimal phases but was attenuated during the less excitable sub-cycles. Theta-dependent sampling (3-8 Hz) was causally dependent on the prefrontal cortex, while high-alpha/low-beta sampling (8-14 Hz) emerged from parietal areas. Collectively, our findings reveal that lesion-induced high-amplitude, low-frequency brain activity is not epiphenomenal but has immediate behavioral consequences. More generally, these results provide causal evidence for the hypothesis that the functional architecture of attention is inherently rhythmic.


Asunto(s)
Periodicidad , Percepción Visual , Humanos , Estimulación Luminosa/métodos , Electroencefalografía
11.
iScience ; 26(10): 107653, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37674986

RESUMEN

Emerging research supports a role of the insula in human cognition. Here, we used intracranial EEG to investigate the spatiotemporal dynamics in the insula during a verbal working memory (vWM) task. We found robust effects for theta, beta, and high frequency activity (HFA) during probe presentation requiring a decision. Theta band activity showed differential involvement across left and right insulae while sequential HFA modulations were observed along the anteroposterior axis. HFA in anterior insula tracked decision making and subsequent HFA was observed in posterior insula after the behavioral response. Our results provide electrophysiological evidence of engagement of different insula subregions in both decision-making and response monitoring during vWM and expand our knowledge of the role of the insula in complex human behavior.

12.
Sci Adv ; 9(34): eadj1895, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37624898

RESUMEN

The proposed mechanisms of sleep-dependent memory consolidation involve the overnight regulation of neural activity at both synaptic and whole-network levels. Now, there is a lack of in vivo data in humans elucidating if, and how, sleep and its varied stages balance neural activity, and if such recalibration benefits memory. We combined electrophysiology with in vivo two-photon calcium imaging in rodents as well as intracranial and scalp electroencephalography (EEG) in humans to reveal a key role for non-oscillatory brain activity during rapid eye movement (REM) sleep to mediate sleep-dependent recalibration of neural population dynamics. The extent of this REM sleep recalibration predicted the success of overnight memory consolidation, expressly the modulation of hippocampal-neocortical activity, favoring remembering rather than forgetting. The findings describe a non-oscillatory mechanism how human REM sleep modulates neural population activity to enhance long-term memory.


Asunto(s)
Sueño REM , Sueño , Humanos , Recuerdo Mental , Calcio , Electrofisiología Cardíaca
13.
bioRxiv ; 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37645733

RESUMEN

Imagine a song you know by heart. With little effort you could sing it or play it vividly in your mind. However, we are only beginning to understand how the brain represents, holds, and manipulates these musical "thoughts". Here, we decoded listened and imagined melodies from MEG brain data (N = 71) to show that auditory regions represent the sensory properties of individual sounds, whereas cognitive control (prefrontal cortex, basal nuclei, thalamus) and episodic memory areas (inferior and medial temporal lobe, posterior cingulate, precuneus) hold and manipulate the melody as an abstract unit. Furthermore, the mental manipulation of a melody systematically changes its neural representation, reflecting the volitional control of auditory images. Our work sheds light on the nature and dynamics of auditory representations and paves the way for future work on neural decoding of auditory imagination.

14.
PLoS Biol ; 21(8): e3002176, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37582062

RESUMEN

Music is core to human experience, yet the precise neural dynamics underlying music perception remain unknown. We analyzed a unique intracranial electroencephalography (iEEG) dataset of 29 patients who listened to a Pink Floyd song and applied a stimulus reconstruction approach previously used in the speech domain. We successfully reconstructed a recognizable song from direct neural recordings and quantified the impact of different factors on decoding accuracy. Combining encoding and decoding analyses, we found a right-hemisphere dominance for music perception with a primary role of the superior temporal gyrus (STG), evidenced a new STG subregion tuned to musical rhythm, and defined an anterior-posterior STG organization exhibiting sustained and onset responses to musical elements. Our findings show the feasibility of applying predictive modeling on short datasets acquired in single patients, paving the way for adding musical elements to brain-computer interface (BCI) applications.


Asunto(s)
Corteza Auditiva , Música , Humanos , Corteza Auditiva/fisiología , Mapeo Encefálico , Percepción Auditiva/fisiología , Lóbulo Temporal/fisiología , Estimulación Acústica
15.
Commun Biol ; 6(1): 871, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620589

RESUMEN

Expectations are often dynamic: sports fans know that expectations are rapidly updated as games unfold. Yet expectations have traditionally been studied as static. Here we present behavioral and electrophysiological evidence of sub-second changes in expectations using slot machines as a case study. In Study 1, we demonstrate that EEG signal before the slot machine stops varies based on proximity to winning. Study 2 introduces a behavioral paradigm to measure dynamic expectations via betting, and shows that expectation trajectories vary as a function of winning proximity. Notably, these expectation trajectories parallel Study 1's EEG activity. Studies 3 (EEG) and 4 (behavioral) replicate these findings in the loss domain. These four studies provide compelling evidence that dynamic sub-second updates in expectations can be behaviorally and electrophysiologically measured. Our research opens promising avenues for understanding the dynamic nature of reward expectations and their impact on cognitive processes.


Asunto(s)
Motivación , Recompensa
16.
Cell Rep ; 42(7): 112752, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37422763

RESUMEN

Instances of sustained stationary sensory input are ubiquitous. However, previous work focused almost exclusively on transient onset responses. This presents a critical challenge for neural theories of consciousness, which should account for the full temporal extent of experience. To address this question, we use intracranial recordings from ten human patients with epilepsy to view diverse images of multiple durations. We reveal that, in sensory regions, despite dramatic changes in activation magnitude, the distributed representation of categories and exemplars remains sustained and stable. In contrast, in frontoparietal regions, we find transient content representation at stimulus onset. Our results highlight the connection between the anatomical and temporal correlates of experience. To the extent perception is sustained, it may rely on sensory representations and to the extent perception is discrete, centered on perceptual updating, it may rely on frontoparietal representations.


Asunto(s)
Estado de Conciencia , Epilepsia , Humanos , Estado de Conciencia/fisiología , Percepción Visual/fisiología , Corteza Prefrontal
17.
Cell Rep ; 42(8): 112865, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37494185

RESUMEN

Social decision making requires the integration of reward valuation and social cognition systems, both dependent on the orbitofrontal cortex (OFC). How these two OFC functions interact is largely unknown. We recorded intracranial activity from the OFC of ten patients making choices in a social context where reward inequity with a social counterpart varied and could be either advantageous or disadvantageous. We find that OFC high-frequency activity (HFA; 70-150 Hz) encodes self-reward, consistent with previous reports. We also observe encoding of the social counterpart's reward, as well as the type of inequity being experienced. Additionally, we find evidence of inequity-dependent reward encoding: depending on the type of inequity, electrodes rapidly and reversibly switch between different reward-encoding profiles. These results provide direct evidence for encoding of self- and other rewards in the human OFC and highlight the dynamic nature of encoding in the OFC as a function of social context.


Asunto(s)
Neuronas , Corteza Prefrontal , Humanos , Neuronas/fisiología , Corteza Prefrontal/fisiología , Recompensa
18.
Proc Natl Acad Sci U S A ; 120(28): e2220523120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399398

RESUMEN

The human prefrontal cortex (PFC) constitutes the structural basis underlying flexible cognitive control, where mixed-selective neural populations encode multiple task features to guide subsequent behavior. The mechanisms by which the brain simultaneously encodes multiple task-relevant variables while minimizing interference from task-irrelevant features remain unknown. Leveraging intracranial recordings from the human PFC, we first demonstrate that competition between coexisting representations of past and present task variables incurs a behavioral switch cost. Our results reveal that this interference between past and present states in the PFC is resolved through coding partitioning into distinct low-dimensional neural states; thereby strongly attenuating behavioral switch costs. In sum, these findings uncover a fundamental coding mechanism that constitutes a central building block of flexible cognitive control.


Asunto(s)
Cognición , Corteza Prefrontal , Humanos
19.
Cereb Cortex ; 33(14): 8837-8848, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37280730

RESUMEN

Context modulates sensory neural activations enhancing perceptual and behavioral performance and reducing prediction errors. However, the mechanism of when and where these high-level expectations act on sensory processing is unclear. Here, we isolate the effect of expectation absent of any auditory evoked activity by assessing the response to omitted expected sounds. Electrocorticographic signals were recorded directly from subdural electrode grids placed over the superior temporal gyrus (STG). Subjects listened to a predictable sequence of syllables, with some infrequently omitted. We found high-frequency band activity (HFA, 70-170 Hz) in response to omissions, which overlapped with a posterior subset of auditory-active electrodes in STG. Heard syllables could be distinguishable reliably from STG, but not the identity of the omitted stimulus. Both omission- and target-detection responses were also observed in the prefrontal cortex. We propose that the posterior STG is central for implementing predictions in the auditory environment. HFA omission responses in this region appear to index mismatch-signaling or salience detection processes.


Asunto(s)
Corteza Auditiva , Humanos , Corteza Auditiva/fisiología , Área de Wernicke , Estimulación Acústica , Potenciales Evocados Auditivos/fisiología , Mapeo Encefálico , Percepción Auditiva/fisiología
20.
Hippocampus ; 33(10): 1154-1157, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37365860

RESUMEN

We report distinct contributions of multiple memory systems to the retrieval of the temporal order of events. The neural dynamics related to the retrieval of movie scenes revealed that recalling the temporal order of close events elevates hippocampal theta power, like that observed for recalling close spatial relationships. In contrast, recalling far events increases beta power in the orbitofrontal cortex, reflecting recall based on the overall movie structure.


Asunto(s)
Memoria Episódica , Recuerdo Mental , Hipocampo , Corteza Prefrontal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA