Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38558977

RESUMEN

Spared regions of the damaged central nervous system undergo dynamic remodeling and exhibit a remarkable potential for therapeutic exploitation. Here, lesion-remote astrocytes (LRAs), which interact with viable neurons, glia and neural circuitry, undergo reactive transformations whose molecular and functional properties are poorly understood. Using multiple transcriptional profiling methods, we interrogated LRAs from spared regions of mouse spinal cord following traumatic spinal cord injury (SCI). We show that LRAs acquire a spectrum of molecularly distinct, neuroanatomically restricted reactivity states that evolve after SCI. We identify transcriptionally unique reactive LRAs in degenerating white matter that direct the specification and function of local microglia that clear lipid-rich myelin debris to promote tissue repair. Fueling this LRA functional adaptation is Ccn1 , which encodes for a secreted matricellular protein. Loss of astrocyte CCN1 leads to excessive, aberrant activation of local microglia with (i) abnormal molecular specification, (ii) dysfunctional myelin debris processing, and (iii) impaired lipid metabolism, culminating in blunted debris clearance and attenuated neurological recovery from SCI. Ccn1 -expressing white matter astrocytes are specifically induced by local myelin damage and generated in diverse demyelinating disorders in mouse and human, pointing to their fundamental, evolutionarily conserved role in white matter repair. Our findings show that LRAs assume regionally divergent reactivity states with functional adaptations that are induced by local context-specific triggers and influence disorder outcome. Astrocytes tile the central nervous system (CNS) where they serve vital roles that uphold healthy nervous system function, including regulation of synapse development, buffering of neurotransmitters and ions, and provision of metabolic substrates 1 . In response to diverse CNS insults, astrocytes exhibit disorder-context specific transformations that are collectively referred to as reactivity 2-5 . The characteristics of regionally and molecularly distinct reactivity states are incompletely understood. The mechanisms through which distinct reactivity states arise, how they evolve or resolve over time, and their consequences for local cell function and CNS disorder progression remain enigmatic. Immediately adjacent to CNS lesions, border-forming astrocytes (BFAs) undergo transcriptional reprogramming and proliferation to form a neuroprotective barrier that restricts inflammation and supports axon regeneration 6-9 . Beyond the lesion, spared but dynamic regions of the injured CNS exhibit varying degrees of synaptic circuit remodeling and progressive cellular responses to secondary damage that have profound consequences for neural repair and recovery 10,11 . Throughout these cytoarchitecturally intact, but injury-reactive regions, lesion-remote astrocytes (LRAs) intermingle with neurons and glia, undergo little to no proliferation, and exhibit varying degrees of cellular hypertrophy 7,12,13 . The molecular and functional properties of LRAs remain grossly undefined. Therapeutically harnessing spared regions of the injured CNS will require a clearer understanding of the accompanying cellular and molecular landscape. Here, we leveraged integrative transcriptional profiling methodologies to identify multiple spatiotemporally resolved, molecularly distinct states of LRA reactivity within the injured spinal cord. Computational modeling of LRA-mediated heterotypic cell interactions, astrocyte-specific conditional gene deletion, and multiple mouse models of acute and chronic CNS white matter degeneration were used to interrogate a newly identified white matter degeneration-reactive astrocyte subtype. We define how this reactivity state is induced and its role in governing the molecular and functional specification of local microglia that clear myelin debris from the degenerating white matter to promote repair.

2.
Cancer Cell ; 42(1): 70-84.e8, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38194915

RESUMEN

Strategies are needed to better identify patients that will benefit from immunotherapy alone or who may require additional therapies like chemotherapy or radiotherapy to overcome resistance. Here we employ single-cell transcriptomics and spatial proteomics to profile triple negative breast cancer biopsies taken at baseline, after one cycle of pembrolizumab, and after a second cycle of pembrolizumab given with radiotherapy. Non-responders lack immune infiltrate before and after therapy and exhibit minimal therapy-induced immune changes. Responding tumors form two groups that are distinguishable by a classifier prior to therapy, with one showing high major histocompatibility complex expression, evidence of tertiary lymphoid structures, and displaying anti-tumor immunity before treatment. The other responder group resembles non-responders at baseline and mounts a maximal immune response, characterized by cytotoxic T cell and antigen presenting myeloid cell interactions, only after combination therapy, which is mirrored in a murine model of triple negative breast cancer.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/radioterapia , Anticuerpos Monoclonales Humanizados/uso terapéutico , Terapia Combinada , Inmunoterapia
3.
iScience ; 26(9): 107703, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37701814

RESUMEN

Bladder cancer (BLCA) is more common in men but more aggressive in women. Sex-based differences in cancer biology are commonly studied using a murine model with BLCA generated by N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN). While tumors in the BBN model have been profiled, these profiles provide limited information on the tumor microenvironment. Here, we applied single-cell RNA sequencing to characterize cell-type specific transcriptional differences between male and female BBN-induced tumors. We found proportional and gene expression differences in epithelial and non-epithelial subpopulations between male and female tumors. Expression of several genes predicted sex-specific survival in several human BLCA datasets. We identified novel and clinically relevant sex-specific transcriptional signatures including immune cells in the tumor microenvironment and it validated the relevance of the BBN model for studying sex differences in human BLCA. This work highlights the importance of considering sex as a biological variable in the development of new and accurate cancer markers.

4.
Oncoimmunology ; 12(1): 2222560, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37363104

RESUMEN

Focal radiation therapy (RT) has attracted considerable attention as a combinatorial partner for immunotherapy (IT), largely reflecting a well-defined, predictable safety profile and at least some potential for immunostimulation. However, only a few RT-IT combinations have been tested successfully in patients with cancer, highlighting the urgent need for an improved understanding of the interaction between RT and IT in both preclinical and clinical scenarios. Every year since 2016, ImmunoRad gathers experts working at the interface between RT and IT to provide a forum for education and discussion, with the ultimate goal of fostering progress in the field at both preclinical and clinical levels. Here, we summarize the key concepts and findings presented at the Sixth Annual ImmunoRad conference.


Asunto(s)
Neoplasias , Humanos , Terapia Combinada , Neoplasias/radioterapia , Neoplasias/tratamiento farmacológico , Inmunoterapia
5.
Cell Genom ; 3(3): 100272, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36950379

RESUMEN

Estrogen and progesterone have been extensively studied in the mammary gland, but the molecular effects of androgen remain largely unexplored. Transgender men are recorded as female at birth but identify as male and may undergo gender-affirming androgen therapy to align their physical characteristics and gender identity. Here we perform single-cell-resolution transcriptome, chromatin, and spatial profiling of breast tissues from transgender men following androgen therapy. We find canonical androgen receptor gene targets are upregulated in cells expressing the androgen receptor and that paracrine signaling likely drives sex-relevant androgenic effects in other cell types. We also observe involution of the epithelium and a spatial reconfiguration of immune, fibroblast, and vascular cells, and identify a gene regulatory network associated with androgen-induced fat loss. This work elucidates the molecular consequences of androgen activity in the human breast at single-cell resolution.

6.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38203254

RESUMEN

Accurate staging of bladder cancer assists in identifying optimal treatment (e.g., transurethral resection vs. radical cystectomy vs. bladder preservation). However, currently, about one-third of patients are over-staged and one-third are under-staged. There is a pressing need for a more accurate staging modality to evaluate patients with bladder cancer to assist clinical decision-making. We hypothesize that MRI/RNA-seq-based radiogenomics and artificial intelligence can more accurately stage bladder cancer. A total of 40 magnetic resonance imaging (MRI) and matched formalin-fixed paraffin-embedded (FFPE) tissues were available for analysis. Twenty-eight (28) MRI and their matched FFPE tissues were available for training analysis, and 12 matched MRI and FFPE tissues were used for validation. FFPE samples were subjected to bulk RNA-seq, followed by bioinformatics analysis. In the radiomics, several hundred image-based features from bladder tumors in MRI were extracted and analyzed. Overall, the model obtained mean sensitivity, specificity, and accuracy of 94%, 88%, and 92%, respectively, in differentiating intra- vs. extra-bladder cancer. The proposed model demonstrated improvement in the three matrices by 17%, 33%, and 25% and 17%, 16%, and 17% as compared to the genetic- and radiomic-based models alone, respectively. The radiogenomics of bladder cancer provides insight into discriminative features capable of more accurately staging bladder cancer. Additional studies are underway.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Vejiga Urinaria , Humanos , RNA-Seq , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Neoplasias de la Vejiga Urinaria/genética , Imagen por Resonancia Magnética , Músculos
7.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34518220

RESUMEN

Bladder cancer (BC) has a 70% telomerase reverse transcriptase (TERT or hTERT in humans) promoter mutation prevalence, commonly at -124 base pairs, and this is associated with increased hTERT expression and poor patient prognosis. We inserted a green fluorescent protein (GFP) tag in the mutant hTERT promoter allele to create BC cells expressing an hTERT-GFP fusion protein. These cells were used in a fluorescence-activated cell sorting-based pooled CRISPR-Cas9 Kinome knockout genetic screen to identify tripartite motif containing 28 (TRIM28) and TRIM24 as regulators of hTERT expression. TRIM28 activates, while TRIM24 suppresses, hTERT transcription from the mutated promoter allele. TRIM28 is recruited to the mutant promoter where it interacts with TRIM24, which inhibits its activity. Phosphorylation of TRIM28 through the mTOR complex 1 (mTORC1) releases it from TRIM24 and induces hTERT transcription. TRIM28 expression promotes in vitro and in vivo BC cell growth and stratifies BC patient outcome. mTORC1 inhibition with rapamycin analog Ridaforolimus suppresses TRIM28 phosphorylation, hTERT expression, and cell viability. This study may lead to hTERT-directed cancer therapies with reduced effects on normal progenitor cells.


Asunto(s)
Mutación/genética , Regiones Promotoras Genéticas/genética , Telomerasa/genética , Factores de Transcripción/genética , Transcripción Genética/genética , Proteína 28 que Contiene Motivos Tripartito/genética , Neoplasias de la Vejiga Urinaria/genética , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia Celular/genética , Regulación Enzimológica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células Madre/patología
8.
Nat Commun ; 12(1): 4906, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385456

RESUMEN

Neoadjuvant chemotherapy (NAC) prior to surgery and immune checkpoint therapy (ICT) have revolutionized bladder cancer management. However, stratification of patients that would benefit most from these modalities remains a major clinical challenge. Here, we combine single nuclei RNA sequencing with spatial transcriptomics and single-cell resolution spatial proteomic analysis of human bladder cancer to identify an epithelial subpopulation with therapeutic response prediction ability. These cells express Cadherin 12 (CDH12, N-Cadherin 2), catenins, and other epithelial markers. CDH12-enriched tumors define patients with poor outcome following surgery with or without NAC. In contrast, CDH12-enriched tumors exhibit superior response to ICT. In all settings, patient stratification by tumor CDH12 enrichment offers better prediction of outcome than currently established bladder cancer subtypes. Molecularly, the CDH12 population resembles an undifferentiated state with inherently aggressive biology including chemoresistance, likely mediated through progenitor-like gene expression and fibroblast activation. CDH12-enriched cells express PD-L1 and PD-L2 and co-localize with exhausted T-cells, possibly mediated through CD49a (ITGA1), providing one explanation for ICT efficacy in these tumors. Altogether, this study describes a cancer cell population with an intriguing diametric response to major bladder cancer therapeutics. Importantly, it also provides a compelling framework for designing biomarker-guided clinical trials.


Asunto(s)
Cadherinas/genética , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Inmunoterapia/métodos , Neoplasias de la Vejiga Urinaria/terapia , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proteínas Relacionadas con las Cadherinas , Cadherinas/metabolismo , Cateninas/genética , Cateninas/metabolismo , Perfilación de la Expresión Génica/métodos , Humanos , Estimación de Kaplan-Meier , Terapia Neoadyuvante/métodos , Evaluación de Resultado en la Atención de Salud , Proteómica/métodos , RNA-Seq/métodos , Linfocitos T/metabolismo , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo , Vejiga Urinaria/cirugía , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/cirugía
9.
Cell Metab ; 33(5): 1013-1026.e6, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33609439

RESUMEN

Mitochondrial respiration is critical for cell proliferation. In addition to producing ATP, respiration generates biosynthetic precursors, such as aspartate, an essential substrate for nucleotide synthesis. Here, we show that in addition to depleting intracellular aspartate, electron transport chain (ETC) inhibition depletes aspartate-derived asparagine, increases ATF4 levels, and impairs mTOR complex I (mTORC1) activity. Exogenous asparagine restores proliferation, ATF4 and mTORC1 activities, and mTORC1-dependent nucleotide synthesis in the context of ETC inhibition, suggesting that asparagine communicates active respiration to ATF4 and mTORC1. Finally, we show that combination of the ETC inhibitor metformin, which limits tumor asparagine synthesis, and either asparaginase or dietary asparagine restriction, which limit tumor asparagine consumption, effectively impairs tumor growth in multiple mouse models of cancer. Because environmental asparagine is sufficient to restore tumor growth in the context of respiration impairment, our findings suggest that asparagine synthesis is a fundamental purpose of tumor mitochondrial respiration, which can be harnessed for therapeutic benefit to cancer patients.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Asparagina/metabolismo , Mitocondrias/metabolismo , Animales , Asparagina/farmacología , Ácido Aspártico/deficiencia , Ácido Aspártico/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dieta/veterinaria , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Ratones Endogámicos NOD , Mitocondrias/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/mortalidad , Neoplasias/patología , Nucleótidos/metabolismo , Tasa de Supervivencia
10.
Epigenetics Chromatin ; 13(1): 39, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33008446

RESUMEN

BACKGROUND: Partially methylated domains (PMDs) are a hallmark of epigenomes in reproducible and specific biological contexts, including cancer cells, the placenta, and cultured cell lines. Existing methods for deciding whether PMDs exist in a sample, as well as their identification, are few, often tailored to specific biological questions, and require high coverage samples for accurate identification. RESULTS: In this study, we outline a set of axioms that take a step towards a functional definition for PMDs, describe an improved method for comparable PMD detection across samples with substantially differing sequencing depths, and refine the decision criteria for whether a sample contains PMDs using a data-driven approach. Applying our method to 267 methylomes from 7 species, we corroborated recent results regarding the general association between replication timing and PMD state, and report identification of several reproducibly "escapee" genes within late-replicating domains that escape the reduced expression and hypomethylation of their immediate genomic neighborhood. We also explored the discordant PMD state of orthologous genes between human and mouse, and observed a directional association of PMD state with gene expression and local gene density. CONCLUSIONS: Our improved method makes low sequencing depth, population-level studies of PMD variation possible and our results further refine the model of PMD formation as one where sequence context and regional epigenomic features both play a role in gradual genome-wide hypomethylation.


Asunto(s)
Metilación de ADN , Epigenoma , Animales , Línea Celular Tumoral , Células Cultivadas , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Pulmón/metabolismo , Glándulas Mamarias Humanas/metabolismo , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Placenta/metabolismo , Embarazo , Especificidad de la Especie
11.
Cell Rep ; 27(3): 719-729.e6, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30995471

RESUMEN

Long non-coding RNAs (lncRNAs) show patterns of tissue- and cell type-specific expression that are very similar to those of protein coding genes and consequently have the potential to control stem and progenitor cell fate decisions along a differentiation trajectory. To understand the roles that lncRNAs may play in hematopoiesis, we selected a subset of mouse lncRNAs with potentially relevant expression patterns and refined our candidate list using evidence of conserved expression in human blood lineages. For each candidate, we assessed its possible role in hematopoietic differentiation in vivo using competitive transplantation. Our studies identified two lncRNAs that were required for hematopoiesis. One of these, Spehd, showed defective multilineage differentiation, and its silencing yielded common myeloid progenitors that are deficient in their oxidative phosphorylation pathway. This effort not only suggests that lncRNAs can contribute to differentiation decisions during hematopoiesis but also provides a path toward the identification of functional lncRNAs in other differentiation hierarchies.


Asunto(s)
Diferenciación Celular , Células Madre Hematopoyéticas/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Trasplante de Médula Ósea , Línea Celular Tumoral , Linaje de la Célula , Quinasa 6 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/metabolismo , Femenino , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/citología , Ratones , Ratones Endogámicos C57BL , Fosforilación Oxidativa , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , ARN Interferente Pequeño/metabolismo , Regeneración , Transactivadores/antagonistas & inhibidores , Transactivadores/genética , Transactivadores/metabolismo
12.
Oncoimmunology ; 7(5): e1421891, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721371

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive and molecularly diverse breast cancer subtype typified by the presence of p53 mutations (∼80%), elevated immune gene signatures and neoantigen expression, as well as the presence of tumor infiltrating lymphocytes (TILs). As these factors are hypothesized to be strong immunologic prerequisites for the use of immune checkpoint blockade (ICB) antibodies, multiple clinical trials testing single ICBs have advanced to Phase III, with early indications of heterogeneous response rates of <20% to anti-PD1 and anti-PDL1 ICB. While promising, these modest response rates highlight the need for mechanistic studies to understand how different ICBs function, how their combination impacts functionality and efficacy, as well as what immunologic parameters predict efficacy to different ICBs regimens in TNBC. To address these issues, we tested anti-PD1 and anti-CTLA4 in multiple models of TNBC and found that their combination profoundly enhanced the efficacy of either treatment alone. We demonstrate that this efficacy is due to anti-CTLA4-driven expansion of an individually unique T-cell receptor (TCR) repertoire whose functionality is enhanced by both intratumoral Treg suppression and anti-PD1 blockade of tumor expressed PDL1. Notably, the individuality of the TCR repertoire was observed regardless of whether the tumor cells expressed a nonself antigen (ovalbumin) or if tumor-specific transgenic T-cells were transferred prior to sequencing. However, responsiveness was strongly correlated with systemic measures of tumor-specific T-cell and B-cell responses, which along with systemic assessment of TCR expansion, may serve as the most useful predictors for clinical responsiveness in future clinical trials of TNBC utilizing anti-PD1/anti-CTLA4 ICB.

14.
Nature ; 554(7692): 378-381, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29414946

RESUMEN

Using a functional model of breast cancer heterogeneity, we previously showed that clonal sub-populations proficient at generating circulating tumour cells were not all equally capable of forming metastases at secondary sites. A combination of differential expression and focused in vitro and in vivo RNA interference screens revealed candidate drivers of metastasis that discriminated metastatic clones. Among these, asparagine synthetase expression in a patient's primary tumour was most strongly correlated with later metastatic relapse. Here we show that asparagine bioavailability strongly influences metastatic potential. Limiting asparagine by knockdown of asparagine synthetase, treatment with l-asparaginase, or dietary asparagine restriction reduces metastasis without affecting growth of the primary tumour, whereas increased dietary asparagine or enforced asparagine synthetase expression promotes metastatic progression. Altering asparagine availability in vitro strongly influences invasive potential, which is correlated with an effect on proteins that promote the epithelial-to-mesenchymal transition. This provides at least one potential mechanism for how the bioavailability of a single amino acid could regulate metastatic progression.


Asunto(s)
Asparagina/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Metástasis de la Neoplasia/patología , Animales , Asparaginasa/metabolismo , Asparaginasa/uso terapéutico , Asparagina/deficiencia , Aspartatoamoníaco Ligasa/genética , Aspartatoamoníaco Ligasa/metabolismo , Disponibilidad Biológica , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Masculino , Ratones , Invasividad Neoplásica/patología , Pronóstico , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Interferencia de ARN , Reproducibilidad de los Resultados
16.
Mol Cell ; 67(2): 348-354.e4, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28732207

RESUMEN

We have combined a machine-learning approach with other strategies to optimize knockout efficiency with the CRISPR/Cas9 system. In addition, we have developed a multiplexed sgRNA expression strategy that promotes the functional ablation of single genes and allows for combinatorial targeting. These strategies have been combined to design and construct a genome-wide, sequence-verified, arrayed CRISPR library. This resource allows single-target or combinatorial genetic screens to be carried out at scale in a multiplexed or arrayed format. By conducting parallel loss-of-function screens, we compare our approach to existing sgRNA design and expression strategies.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Endonucleasas/genética , Silenciador del Gen , Marcación de Gen/métodos , ARN Guía de Kinetoplastida/genética , Algoritmos , Proteínas Asociadas a CRISPR/metabolismo , Endonucleasas/metabolismo , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células K562 , Aprendizaje Automático , ARN Guía de Kinetoplastida/metabolismo , Transfección
17.
Nature ; 520(7547): 358-62, 2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-25855289

RESUMEN

Cancer metastasis requires that primary tumour cells evolve the capacity to intravasate into the lymphatic system or vasculature, and extravasate into and colonize secondary sites. Others have demonstrated that individual cells within complex populations show heterogeneity in their capacity to form secondary lesions. Here we develop a polyclonal mouse model of breast tumour heterogeneity, and show that distinct clones within a mixed population display specialization, for example, dominating the primary tumour, contributing to metastatic populations, or showing tropism for entering the lymphatic or vasculature systems. We correlate these stable properties to distinct gene expression profiles. Those clones that efficiently enter the vasculature express two secreted proteins, Serpine2 and Slpi, which were necessary and sufficient to program these cells for vascular mimicry. Our data indicate that these proteins not only drive the formation of extravascular networks but also ensure their perfusion by acting as anticoagulants. We propose that vascular mimicry drives the ability of some breast tumour cells to contribute to distant metastases while simultaneously satisfying a critical need of the primary tumour to be fed by the vasculature. Enforced expression of SERPINE2 and SLPI in human breast cancer cell lines also programmed them for vascular mimicry, and SERPINE2 and SLPI were overexpressed preferentially in human patients that had lung-metastatic relapse. Thus, these two secreted proteins, and the phenotype they promote, may be broadly relevant as drivers of metastatic progression in human cancer.


Asunto(s)
Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/patología , Endotelio Vascular/patología , Metástasis de la Neoplasia/patología , Animales , Anticoagulantes/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Células Clonales/metabolismo , Células Clonales/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Endotelio Vascular/metabolismo , Matriz Extracelular/metabolismo , Femenino , Perfilación de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Metástasis de la Neoplasia/genética , Recurrencia , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo , Análisis de Secuencia de ADN , Serpina E2/metabolismo
18.
Mol Cell ; 56(6): 796-807, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25435137

RESUMEN

The strength of conclusions drawn from RNAi-based studies is heavily influenced by the quality of tools used to elicit knockdown. Prior studies have developed algorithms to design siRNAs. However, to date, no established method has emerged to identify effective shRNAs, which have lower intracellular abundance than transfected siRNAs and undergo additional processing steps. We recently developed a multiplexed assay for identifying potent shRNAs and used this method to generate ∼250,000 shRNA efficacy data points. Using these data, we developed shERWOOD, an algorithm capable of predicting, for any shRNA, the likelihood that it will elicit potent target knockdown. Combined with additional shRNA design strategies, shERWOOD allows the ab initio identification of potent shRNAs that specifically target the majority of each gene's multiple transcripts. We validated the performance of our shRNA designs using several orthogonal strategies and constructed genome-wide collections of shRNAs for humans and mice based on our approach.


Asunto(s)
ARN Interferente Pequeño/genética , Programas Informáticos , Algoritmos , Secuencia de Bases , Línea Celular Tumoral , Simulación por Computador , Secuencia de Consenso , Técnicas de Silenciamiento del Gen , Humanos , MicroARNs/genética , Modelos Genéticos , Datos de Secuencia Molecular
19.
PLoS One ; 9(2): e87647, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24504085

RESUMEN

Forkhead box (FOX) transcription factors regulate a wide variety of cellular functions in higher eukaryotes, including cell cycle control and developmental regulation. In Saccharomyces cerevisiae, Forkhead proteins Fkh1 and Fkh2 perform analogous functions, regulating genes involved in cell cycle control, while also regulating mating-type silencing and switching involved in gamete development. Recently, we revealed a novel role for Fkh1 and Fkh2 in the regulation of replication origin initiation timing, which, like donor preference in mating-type switching, appears to involve long-range chromosomal interactions, suggesting roles for Fkh1 and Fkh2 in chromatin architecture and organization. To elucidate how Fkh1 and Fkh2 regulate their target DNA elements and potentially regulate the spatial organization of the genome, we undertook a genome-wide analysis of Fkh1 and Fkh2 chromatin binding by ChIP-chip using tiling DNA microarrays. Our results confirm and extend previous findings showing that Fkh1 and Fkh2 control the expression of cell cycle-regulated genes. In addition, the data reveal hundreds of novel loci that bind Fkh1 only and exhibit a distinct chromatin structure from loci that bind both Fkh1 and Fkh2. The findings also show that Fkh1 plays the predominant role in the regulation of a subset of replication origins that initiate replication early, and that Fkh1/2 binding to these loci is cell cycle-regulated. Finally, we demonstrate that Fkh1 and Fkh2 bind proximally to a variety of genetic elements, including centromeres and Pol III-transcribed snoRNAs and tRNAs, greatly expanding their potential repertoire of functional targets, consistent with their recently suggested role in mediating the spatial organization of the genome.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Cromosomas Fúngicos , Factores de Transcripción Forkhead/metabolismo , Genoma Fúngico , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Inmunoprecipitación de Cromatina , Regulación Fúngica de la Expresión Génica , Nucleosomas/metabolismo , Unión Proteica , Origen de Réplica
20.
J Cell Biol ; 201(3): 373-83, 2013 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-23629964

RESUMEN

DNA damage slows DNA synthesis at replication forks; however, the mechanisms remain unclear. Cdc7 kinase is required for replication origin activation, is a target of the intra-S checkpoint, and is implicated in the response to replication fork stress. Remarkably, we found that replication forks proceed more rapidly in cells lacking Cdc7 function than in wild-type cells. We traced this effect to reduced origin firing, which results in fewer replication forks and a consequent decrease in Rad53 checkpoint signaling. Depletion of Orc1, which acts in origin firing differently than Cdc7, had similar effects as Cdc7 depletion, consistent with decreased origin firing being the source of these defects. In contrast, mec1-100 cells, which initiate excess origins and also are deficient in checkpoint activation, showed slower fork progression, suggesting the number of active forks influences their rate, perhaps as a result of competition for limiting factors.


Asunto(s)
Replicación del ADN , Origen de Réplica , Saccharomyces cerevisiae/genética , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Daño del ADN , ADN de Hongos/biosíntesis , ADN de Hongos/genética , Complejo de Reconocimiento del Origen/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA