Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chest ; 163(1): 115-127, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36037984

RESUMEN

BACKGROUND: The optimal length of spontaneous breathing trials (SBTs) in children is unknown. RESEARCH QUESTIONS: What are the most common reasons for SBT failure in children, and when do they occur? Can clinical parameters at the 30-min mark of a 120-min SBT predict outcome? STUDY DESIGN AND METHODS: We performed a secondary analysis of a clinical trial in pediatric ARDS, in which 2-h SBTs are conducted daily. SBT failure is based on objective criteria, including esophageal manometry for effort of breathing, categorized as passage, early failure (≤ 30 min), or late failure (30-120 min). Spirometry was used to calculate respiratory rate (RR), tidal volume (Vt), and rapid shallow breathing index (RSBI), in addition to pulse oximetry and capnography. Predictive models evaluated parameters at 30 min against SBT outcome, using receiver operating characteristic plots and area under the curve. RESULTS: We included 100 children and 305 SBTs, with 42% of SBTs being successful, 32% failing within 30 min, and 25% failing between 30 and 120 min. Of the patients passing SBTs at 30 min, 40% went on to fail by 120 min. High respiratory effort (esophageal manometry) was present in > 80% of failed SBTs. At the 30-min mark, there were no clear thresholds for RR, Vt, RSBI, Fio2, oxygen saturation, or capnography that could reliably predict SBT outcome. Multivariable modeling identified RR (P < .001) and RSBI > 7 (P = .034) at 30 min, pre-SBT inspiratory pressure level (P = .009), and pre-SBT retractions (P = .042) as predictors for SBT failure, but this model performed poorly in an independent validation set with the receiver operating characteristic plot crossing the reference line (area under the curve, 0.67). INTERPRETATION: A 30-min SBT may be too short in children recovering from pediatric ARDS because many go on to fail between 30 and 120 min. Reassuring values of Vt, RR, and gas exchange at 30 min do not reliably predict SBT passage at 2 h, likely because they do not capture the effort of breathing. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT03266016; URL: www. CLINICALTRIALS: gov.


Asunto(s)
Síndrome de Dificultad Respiratoria , Desconexión del Ventilador , Niño , Humanos , Respiración , Respiración Artificial , Frecuencia Respiratoria
2.
Crit Care Med ; 48(8): 1165-1174, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32697487

RESUMEN

OBJECTIVES: Extubation failure is multifactorial, and most tools to assess extubation readiness only evaluate snapshots of patient physiology. Understanding variability in respiratory variables may provide additional information to inform extubation readiness assessments. DESIGN: Secondary analysis of prospectively collected physiologic data of children just prior to extubation during a spontaneous breathing trial. Physiologic data were cleaned to provide 40 consecutive breaths and calculate variability terms, coefficient of variation and autocorrelation, in commonly used respiratory variables (i.e., tidal volume, minute ventilation, and respiratory rate). Other clinical variables included diagnostic and demographic data, median values of respiratory variables during spontaneous breathing trials, and the change in airway pressure during an occlusion maneuver to measure respiratory muscle strength (maximal change in airway pressure generated during airway occlusion [PiMax]). Multivariable models evaluated independent associations with reintubation and prolonged use of noninvasive respiratory support after extubation. SETTING: Acute care, children's hospital. PATIENTS: Children were included from the pediatric and cardiothoracic ICUs who were greater than 37 weeks gestational age up to and including 18 years who were intubated greater than or equal to 12 hours with planned extubation. We excluded children who had a contraindication to an esophageal catheter or respiratory inductance plethysmography bands. INTERVENTIONS: Noninterventional study. MEASUREMENTS AND MAIN RESULTS: A total of 371 children were included, 32 of them were reintubated. Many variability terms were associated with reintubation, including coefficient of variation and autocorrelation of the respiratory rate. After controlling for confounding variables such as age and neurologic diagnosis, both coefficient of variation of respiratory rate(p < 0.001) and low PiMax (p = 0.002) retained an independent association with reintubation. Children with either low PiMax or high coefficient of variation of respiratory rate had a nearly three-fold higher risk of extubation failure, and when these children developed postextubation upper airway obstruction, reintubation rates were greater than 30%. CONCLUSIONS: High respiratory variability during spontaneous breathing trials is independently associated with extubation failure in children, with very high rates of extubation failure when these children develop postextubation upper airway obstruction.


Asunto(s)
Extubación Traqueal , Respiración , Adolescente , Extubación Traqueal/efectos adversos , Extubación Traqueal/métodos , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Intubación Intratraqueal/estadística & datos numéricos , Masculino , Frecuencia Respiratoria , Factores de Riesgo , Volumen de Ventilación Pulmonar , Insuficiencia del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...