RESUMEN
Most neurodegenerative diseases such as Alzheimer's disease are proteinopathies linked to the toxicity of amyloid oligomers. Treatments to delay or cure these diseases are lacking. Using budding yeast, we report that the natural lipid tripentadecanoin induces expression of the nitric oxide oxidoreductase Yhb1 to prevent the formation of protein aggregates during aging and extends replicative lifespan. In mammals, tripentadecanoin induces expression of the Yhb1 orthologue, neuroglobin, to protect neurons against amyloid toxicity. Tripentadecanoin also rescues photoreceptors in a mouse model of retinal degeneration and retinal ganglion cells in a Rhesus monkey model of optic atrophy. Together, we propose that tripentadecanoin affects p-bodies to induce neuroglobin expression and offers a potential treatment for proteinopathies and retinal neurodegeneration.
Asunto(s)
Amiloide , Lípidos , Agregación Patológica de Proteínas , Animales , Ratones , Enfermedad de Alzheimer , Amiloide/efectos de los fármacos , Amiloide/metabolismo , Péptidos beta-Amiloides/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Dioxigenasas , Hemoproteínas , Lípidos/farmacología , Mamíferos , Neuroglobina/efectos de los fármacos , Neuroglobina/metabolismo , Cuerpos de Procesamiento/efectos de los fármacos , Cuerpos de Procesamiento/metabolismo , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Células Ganglionares de la Retina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiaeRESUMEN
Heterochromatin has essential functions in maintaining chromosome structure, in protecting genome integrity and in stabilizing gene expression programs. Heterochromatin is often nucleated by underlying DNA repeat sequences, such as major satellite repeats (MSR) and long interspersed nuclear elements (LINE). In order to establish heterochromatin, MSR and LINE elements need to be transcriptionally competent and generate non-coding repeat RNA that remain chromatin associated. We explored whether these heterochromatic RNA, similar to DNA and histones, may be methylated, particularly for 5-methylcytosine (5mC) or methyl-6-adenosine (m6A). Our analysis in mouse ES cells identifies only background level of 5mC but significant enrichment for m6A on heterochromatic RNA. Moreover, MSR transcripts are a novel target for m6A RNA modification, and their m6A RNA enrichment is decreased in ES cells that are mutant for Mettl3 or Mettl14, which encode components of a central RNA methyltransferase complex. Importantly, MSR transcripts that are partially deficient in m6A RNA methylation display impaired chromatin association and have a reduced potential to form RNA:DNA hybrids. We propose that m6A modification of MSR RNA will enhance the functions of MSR repeat transcripts to stabilize mouse heterochromatin.
Asunto(s)
ADN/metabolismo , Heterocromatina , ARN/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Metilación , Ratones , Células Madre Embrionarias de Ratones , Secuencias Repetidas en TándemRESUMEN
TRIM71/LIN-41, a phylogenetically conserved regulator of development, controls stem cell fates. Mammalian TRIM71 exhibits both RNA-binding and protein ubiquitylation activities, but the functional contribution of either activity and relevant primary targets remain poorly understood. Here, we demonstrate that TRIM71 shapes the transcriptome of mouse embryonic stem cells (mESCs) predominantly through its RNA-binding activity. We reveal that TRIM71 binds targets through 3' untranslated region (UTR) hairpin motifs and that it acts predominantly by target degradation. TRIM71 mutations implicated in etiogenesis of human congenital hydrocephalus impair target silencing. We identify a set of primary targets consistently regulated in various human and mouse cell lines, including MBNL1 (Muscleblind-like protein 1). MBNL1 promotes cell differentiation through regulation of alternative splicing, and we demonstrate that TRIM71 promotes embryonic splicing patterns through MBNL1 repression. Hence, repression of MBNL1-dependent alternative splicing may contribute to TRIM71's function in regulating stem cell fates.
Asunto(s)
Empalme Alternativo/genética , Regulación de la Expresión Génica/genética , Proteínas de Unión al ARN/genética , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular Tumoral , Células Madre Embrionarias , Humanos , Ratones , Ratones Noqueados , Mutación , Motivos de Nucleótidos , Unión Proteica , Dominios Proteicos/genética , Interferencia de ARN , Proteínas de Unión al ARN/metabolismoRESUMEN
Multiple lines of evidence suggest the RNA modification N6 -methyladonsine (m6 A), which is installed in the nucleus cotranscriptionally and, thereafter, serves as a reversible chemical imprint that influences several steps of mRNA metabolism. This includes but is not limited to RNA folding, splicing, stability, transport and translation. In this Review we focus on the current view of the nuclear installation of m6 A as well as the molecular players involved, the so called m6 A writers. We also explore the effector proteins, or m6 A readers, that decode the imprint in different cellular contexts and compartments, and ultimately, the way the modification influences the lifecycle of an RNA molecule. The wide evolutionary conservation of m6 A and its critical role in physiology and disease warrants further studies into this burgeoning and exciting field.
Asunto(s)
Adenosina/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Núcleo Celular , Humanos , Metilación , Biosíntesis de Proteínas , Pliegue del ARN , Estabilidad del ARNRESUMEN
TAR DNA-binding protein 43 (TDP-43) is a key player in neurodegenerative diseases including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Accumulation of TDP-43 is associated with neuronal death in the brain. How increased and disease-causing mutant forms of TDP-43 induce cell death remains unclear. Here we addressed the role of TDP-43 during neural development and show that reduced TDP-43 causes defects in neural stem/progenitor cell proliferation but not cell death. However, overexpression of wild type and TDP-43A315T proteins induce p53-dependent apoptosis of neural stem/progenitors and human induced pluripotent cell (iPS)-derived immature cortical neurons. We show that TDP-43 induces expression of the proapoptotic BH3-only genes Bbc3 and Bax, and that p53 inhibition rescues TDP-43 induced cell death of embryonic mouse, and human cortical neurons, including those derived from TDP-43G298S ALS patient iPS cells. Hence, an increase in wild type and mutant TDP-43 induces p53-dependent cell death in neural progenitors developing neurons and this can be rescued. These findings may have important implications for accumulated or mutant TDP-43 induced neurodegenerative diseases.
Asunto(s)
Apoptosis , Proteínas de Unión al ADN/metabolismo , Células-Madre Neurales/citología , Neuronas/citología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Ciclo Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Mutación , Neurogénesis , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
N6-methyladenosine (m6A) is the most abundant mRNA modification in eukaryotes, playing crucial roles in multiple biological processes. m6A is catalyzed by the activity of methyltransferase-like 3 (Mettl3), which depends on additional proteins whose precise functions remain poorly understood. Here we identified Zc3h13 (zinc finger CCCH domain-containing protein 13)/Flacc [Fl(2)d-associated complex component] as a novel interactor of m6A methyltransferase complex components in Drosophila and mice. Like other components of this complex, Flacc controls m6A levels and is involved in sex determination in Drosophila We demonstrate that Flacc promotes m6A deposition by bridging Fl(2)d to the mRNA-binding factor Nito. Altogether, our work advances the molecular understanding of conservation and regulation of the m6A machinery.
Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Drosophila melanogaster/fisiología , Metiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Adenosina/metabolismo , Animales , Proteínas de Ciclo Celular , Línea Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Regulación del Desarrollo de la Expresión Génica , Metilación , Ratones , Células Madre Embrionarias de Ratones , Transporte de Proteínas , Precursores del ARN/genética , Empalme del ARN , Factores de Empalme de ARN , Procesos de Determinación del Sexo/genéticaRESUMEN
Eukaryotic gene expression is heavily regulated at the transcriptional and post-transcriptional levels. An additional layer of regulation occurs co-transcriptionally through processing and decay of nascent transcripts physically associated with chromatin. This process involves RNA interference (RNAi) machinery and is well documented in yeast, but little is known about its conservation in mammals. Here we show that Dgcr8 and Drosha physically associate with chromatin in murine embryonic stem cells (mES), specifically with a subset of transcribed coding and noncoding genes. Dgcr8 recruitment to chromatin is dependent on transcription as well as methyltransferase-like 3 (Mettl3), which catalyzes RNA N6-methyladenosine (m6A). Intriguingly, we found that acute temperature stress causes radical relocalization of Dgcr8 and Mettl3 to heat-shock genes, where they act to co-transcriptionally mark mRNAs for subsequent RNA degradation. Together, our findings elucidate a novel mode of co-transcriptional gene regulation, in which m6A serves as a chemical mark that instigates subsequent post-transcriptional RNA-processing events.
Asunto(s)
Adenosina/metabolismo , Regulación de la Expresión Génica , Estabilidad del ARN , ARN/metabolismo , Transcripción Genética , Animales , Cromatina/metabolismo , Metilación , Metiltransferasas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Unión Proteica , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/metabolismoRESUMEN
Friedreich's ataxia is a neurodegenerative disease caused by deficiency of the mitochondrial protein frataxin. This deficiency results from expansion of a trinucleotide repeat in the first intron of the frataxin gene. Because this repeat expansion resides in an intron and hence does not alter the amino acid sequence of the frataxin protein, gene reactivation could be of therapeutic benefit. High-throughput screening for frataxin activators has so far met with limited success because current cellular models may not accurately assess endogenous frataxin gene regulation. Here we report the design and validation of genome-engineering tools that enable the generation of human cell lines that express the frataxin gene fused to a luciferase reporter gene from its endogenous locus. Performing a pilot high-throughput genomic screen in a newly established reporter cell line, we uncovered novel negative regulators of frataxin expression. Rational design of small-molecule inhibitors of the identified frataxin repressors and/or high-throughput screening of large siRNA or compound libraries with our system may yield treatments for Friedreich's ataxia.
Asunto(s)
Descubrimiento de Drogas , Ataxia de Friedreich/genética , Expresión Génica , Genes Reporteros , Ingeniería Genética , Línea Celular Transformada , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/terapia , Ensayos Analíticos de Alto Rendimiento , Humanos , Interferencia de ARN , ARN Interferente Pequeño/genética , Dedos de Zinc/genéticaRESUMEN
Neural stem cells (NSCs) in the ventricular domain of the subventricular zone (V-SVZ) of rodents produce neurons throughout life while those in humans become largely inactive or may be lost during infancy. Most adult NSCs are quiescent, express glial markers, and depend on Notch signaling for their self-renewal and the generation of neurons. Using genetic markers and lineage tracing, we identified subpopulations of adult V-SVZ NSCs (type 1, 2, and 3) indicating a striking heterogeneity including activated, brain lipid binding protein (BLBP, FABP7) expressing stem cells. BLBP(+) NSCs are mitotically active components of pinwheel structures in the lateral ventricle walls and persistently generate neurons in adulthood. BLBP(+) NSCs express epidermal growth factor (EGF) receptor, proliferate in response to EGF, and are a major clonogenic population in the SVZ. We also find BLBP expressed by proliferative ventricular and subventricular progenitors in the fetal and postnatal human brain. Loss of BLBP(+) stem/progenitor cells correlates with reduced neurogenesis in aging rodents and postnatal humans. These findings of molecular heterogeneity and proliferative differences subdivide the NSC population and have implications for neurogenesis in the forebrain of mammals during aging.
Asunto(s)
Células-Madre Neurales/citología , Neuronas/citología , Prosencéfalo/citología , Animales , Procesos de Crecimiento Celular/fisiología , Humanos , Ratones , Ratones Transgénicos , Células-Madre Neurales/metabolismo , Neurogénesis , Neuronas/metabolismo , Prosencéfalo/metabolismo , Transducción de SeñalRESUMEN
Temporal regulation of embryonic neurogenesis is controlled by hypostable transcription factors. The mechanism of the process is unclear. Here we show that the RNase III Drosha and DGCR8 (also known as Pasha), key components of the microRNA (miRNA) microprocessor, have important functions in mouse neurogenesis. Loss of microprocessor in forebrain neural progenitors resulted in a loss of stem cell character and precocious differentiation whereas Dicer deficiency did not. Drosha negatively regulated expression of the transcription factors Neurogenin 2 (Ngn2) and NeuroD1 whereas forced Ngn2 expression phenocopied the loss of Drosha. Neurog2 mRNA contains evolutionarily conserved hairpins with similarities to pri-miRNAs, and associates with the microprocessor in neural progenitors. We uncovered a Drosha-dependent destabilization of Neurog2 mRNAs consistent with microprocessor cleavage at hairpins. Our findings implicate direct and miRNA-independent destabilization of proneural mRNAs by the microprocessor, which facilitates neural stem cell (NSC) maintenance by blocking accumulation of differentiation and determination factors.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Regulación de la Expresión Génica , MicroARNs , Proteínas del Tejido Nervioso/biosíntesis , Neurogénesis/fisiología , Ribonucleasa III/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Cultivadas , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/biosíntesis , MicroARNs/genética , MicroARNs/fisiología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Embarazo , Ribonucleasa III/antagonistas & inhibidoresRESUMEN
The vacuolar H(+) ATPase (v-ATPase) is crucial for endosome acidification, endocytosis, and trafficking in essentially all eukaryotic cells. Recent studies have shown that inhibition of the v-ATPase also leads to downregulation of important signaling pathways, including Notch and Wnt, which are key regulators of cell differentiation and tissue homeostasis across the animal kingdom. However, the requirement of endosome acidification and endocytosis in the transduction of Notch signaling is still highly debated. Moreover, no study has yet investigated the role of the v-ATPase during mammalian development. Here we show that expression of a dominant-negative subunit of the v-ATPase in neural precursors of the developing mouse cortex depleted neural stem cells by promoting their differentiation and the generation of neurons. Moreover, inhibition of the v-ATPase reduced endogenous Notch signaling and prevented the proliferative effect of a transmembrane, γ-secretase-dependent, active Notch without blocking the effects of its cytoplasmic intracellular domain (NICD). Our data are consistent with recent reports in Drosophila in which the v-ATPase has been suggested to be important for the transduction of Notch signaling. By extending these reports to mammalian embryos, our data may contribute to a better understanding of the role of the v-ATPase, endosome acidification, and endocytosis in signal transduction during neural stem cell differentiation and brain development.
Asunto(s)
Corteza Cerebral/fisiología , Embrión de Mamíferos/fisiología , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Subunidades de Proteína/metabolismo , Receptores Notch/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Diferenciación Celular/genética , Corteza Cerebral/citología , Corteza Cerebral/embriología , Drosophila , Electroporación , Embrión de Mamíferos/citología , Endocitosis , Endosomas/metabolismo , Femenino , Genes Dominantes , Ratones , Células-Madre Neurales/citología , Neurogénesis/fisiología , Neuronas/citología , Plásmidos , Subunidades de Proteína/genética , Receptores Notch/genética , Transducción de Señal , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/genética , Vacuolas/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismoRESUMEN
New neurons are generated in the adult hippocampus throughout life by neural stem/progenitor cells (NSCs), and neurogenesis is a plastic process responsive to external stimuli. We show that canonical Notch signaling through RBP-J is required for hippocampal neurogenesis. Notch signaling distinguishes morphologically distinct Sox2(+) NSCs, and within these pools subpopulations can shuttle between mitotically active or quiescent. Radial and horizontal NSCs respond selectively to neurogenic stimuli. Physical exercise activates the quiescent radial population whereas epileptic seizures induce expansion of the horizontal NSC pool. Surprisingly, reduced neurogenesis correlates with a loss of active horizontal NSCs in aged mice rather than a total loss of stem cells, and the transition to a quiescent state is reversible to rejuvenate neurogenesis in the brain. The discovery of multiple NSC populations with Notch dependence but selective responses to stimuli and reversible quiescence has important implications for the mechanisms of adaptive learning and also for regenerative therapy.