Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 629(8013): 830-836, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720068

RESUMEN

Anthropogenic change is contributing to the rise in emerging infectious diseases, which are significantly correlated with socioeconomic, environmental and ecological factors1. Studies have shown that infectious disease risk is modified by changes to biodiversity2-6, climate change7-11, chemical pollution12-14, landscape transformations15-20 and species introductions21. However, it remains unclear which global change drivers most increase disease and under what contexts. Here we amassed a dataset from the literature that contains 2,938 observations of infectious disease responses to global change drivers across 1,497 host-parasite combinations, including plant, animal and human hosts. We found that biodiversity loss, chemical pollution, climate change and introduced species are associated with increases in disease-related end points or harm, whereas urbanization is associated with decreases in disease end points. Natural biodiversity gradients, deforestation and forest fragmentation are comparatively unimportant or idiosyncratic as drivers of disease. Overall, these results are consistent across human and non-human diseases. Nevertheless, context-dependent effects of the global change drivers on disease were found to be common. The findings uncovered by this meta-analysis should help target disease management and surveillance efforts towards global change drivers that increase disease. Specifically, reducing greenhouse gas emissions, managing ecosystem health, and preventing biological invasions and biodiversity loss could help to reduce the burden of plant, animal and human diseases, especially when coupled with improvements to social and economic determinants of health.


Asunto(s)
Biodiversidad , Cambio Climático , Enfermedades Transmisibles , Contaminación Ambiental , Especies Introducidas , Animales , Humanos , Efectos Antropogénicos , Cambio Climático/estadística & datos numéricos , Enfermedades Transmisibles/epidemiología , Enfermedades Transmisibles/etiología , Conservación de los Recursos Naturales/tendencias , Conjuntos de Datos como Asunto , Contaminación Ambiental/efectos adversos , Agricultura Forestal , Bosques , Especies Introducidas/estadística & datos numéricos , Enfermedades de las Plantas/etiología , Medición de Riesgo , Urbanización
2.
Glob Chang Biol ; 30(1): e17145, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273516

RESUMEN

Human activity changes multiple factors in the environment, which can have positive or negative synergistic effects on organisms. However, few studies have explored the causal effects of multiple anthropogenic factors, such as urbanization and invasive species, on animals and the mechanisms that mediate these interactions. This study examines the influence of urbanization on the detrimental effect of invasive avian vampire flies (Philornis downsi) on endemic Darwin's finches in the Galápagos Islands. We experimentally manipulated nest fly abundance in urban and non-urban locations and then characterized nestling health, fledging success, diet, and gene expression patterns related to host defense. Fledging success of non-parasitized nestlings from urban (79%) and non-urban (75%) nests did not differ significantly. However, parasitized, non-urban nestlings lost more blood, and fewer nestlings survived (8%) compared to urban nestlings (50%). Stable isotopic values (δ15 N) from urban nestling feces were higher than those from non-urban nestlings, suggesting that urban nestlings are consuming more protein. δ15 N values correlated negatively with parasite abundance, which suggests that diet might influence host defenses (e.g., tolerance and resistance). Parasitized, urban nestlings differentially expressed genes within pathways associated with red blood cell production (tolerance) and pro-inflammatory response (innate immunological resistance), compared to parasitized, non-urban nestlings. In contrast, parasitized non-urban nestlings differentially expressed genes within pathways associated with immunoglobulin production (adaptive immunological resistance). Our results suggest that urban nestlings are investing more in pro-inflammatory responses to resist parasites but also recovering more blood cells to tolerate blood loss. Although non-urban nestlings are mounting an adaptive immune response, it is likely a last effort by the immune system rather than an effective defense against avian vampire flies since few nestlings survived.


Asunto(s)
Pinzones , Muscidae , Parásitos , Animales , Humanos , Pinzones/parasitología , Ecuador
3.
iScience ; 26(10): 107875, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37860776

RESUMEN

A major objective of microbial ecology is to identify how the composition of microbial taxa shapes host phenotypes. However, most studies focus on pairwise interactions and ignore the potentially significant effects of higher-order microbial interactions.Here, we quantify the effects of higher-order interactions among taxa on host infection risk. We apply our approach to an in silico dataset that is built to resemble a population of insect hosts with gut-associated microbial communities at risk of infection from an intestinal parasite across a breadth of nutrient environmental contexts.We find that the effect of higher-order interactions is considerable and can change appreciably across environmental contexts. Furthermore, we show that higher-order interactions can stabilize community structure thereby reducing host susceptibility to parasite invasion.Our approach illustrates how incorporating the effects of higher-order interactions among gut microbiota across environments can be essential for understanding their effects on host phenotypes.

4.
Mol Ecol ; 32(22): 6059-6069, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37837269

RESUMEN

Host-associated microbiota can be affected by factors related to environmental change, such as urbanization and invasive species. For example, urban areas often affect food availability for animals, which can change their gut microbiota. Invasive parasites can also influence microbiota through competition or indirectly through a change in the host immune response. These interacting factors can have complex effects on host fitness, but few studies have disentangled the relationship between urbanization and parasitism on an organism's gut microbiota. To address this gap in knowledge, we investigated the effects of urbanization and parasitism by the invasive avian vampire fly (Philornis downsi) on the gut microbiota of nestling small ground finches (Geospiza fuliginosa) on San Cristóbal Island, Galápagos. We conducted a factorial study in which we experimentally manipulated parasite presence in an urban and nonurban area. Faeces were then collected from nestlings to characterize the gut microbiota (i.e. bacterial diversity and community composition). Although we did not find an interactive effect of urbanization and parasitism on the microbiota, we did find main effects of each variable. We found that urban nestlings had lower bacterial diversity and different relative abundances of taxa compared to nonurban nestlings, which could be mediated by introduction of the microbiota of the food items or changes in host physiology. Additionally, parasitized nestlings had lower bacterial richness than nonparasitized nestlings, which could be mediated by a change in the immune system. Overall, this study advances our understanding of the complex effects of anthropogenic stressors on the gut microbiota of birds.


Asunto(s)
Pinzones , Microbioma Gastrointestinal , Muscidae , Passeriformes , Animales , Urbanización , Pinzones/microbiología , Bacterias
5.
Evolution ; 77(12): 2533-2546, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-37671423

RESUMEN

Divergent natural selection should lead to adaptive radiation-that is, the rapid evolution of phenotypic and ecological diversity originating from a single clade. The drivers of adaptive radiation have often been conceptualized through the concept of "adaptive landscapes," yet formal empirical estimates of adaptive landscapes for natural adaptive radiations have proven elusive. Here, we use a 17-year dataset of Darwin's ground finches (Geospiza spp.) at an intensively studied site on Santa Cruz (Galápagos) to estimate individual apparent lifespan in relation to beak traits. We use these estimates to model a multi-species fitness landscape, which we also convert to a formal adaptive landscape. We then assess the correspondence between estimated fitness peaks and observed phenotypes for each of five phenotypic modes (G. fuliginosa, G. fortis [small and large morphotypes], G. magnirostris, and G. scandens). The fitness and adaptive landscapes show 5 and 4 peaks, respectively, and, as expected, the adaptive landscape was smoother than the fitness landscape. Each of the five phenotypic modes appeared reasonably close to the corresponding fitness peak, yet interesting deviations were also documented and examined. By estimating adaptive landscapes in an ongoing adaptive radiation, our study demonstrates their utility as a quantitative tool for exploring and predicting adaptive radiation.


Asunto(s)
Pinzones , Passeriformes , Animales , Pinzones/genética , Selección Genética , Fenotipo , Ecuador , Pico
6.
Oecologia ; 201(4): 877-886, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37012554

RESUMEN

Environmental factors, such as elevated temperature, can have varying effects on hosts and their parasites, which can have consequences for the net outcome of this relationship. The individual direct effects of temperature must be disentangled to determine the net-effect in host-parasite relationships, yet few studies have determined the net-effects in a multi-host system. To address this gap, we experimentally manipulated temperature and parasite presence in the nests of two host species infested by parasitic blowflies (Protocalliphora sialia). We conducted a factorial experiment by increasing temperature (or not) and removing all parasites (or not) in the nests of eastern bluebirds (Sialia sialis) and tree swallows (Tachycineta bicolor). We then measured nestling morphometrics, blood loss, and survival and quantified parasite abundance. We predicted that if temperature had a direct effect on parasite abundance, then elevated temperature would cause similar directional effects on parasite abundance across host species. If temperature had a direct effect on hosts, and therefore an indirect effect on the parasite, parasite abundance would differ across host species. Swallow nests with elevated temperature had fewer parasites compared to nests without temperature manipulation. In contrast, bluebird nests with elevated temperatures had more parasites compared to nests without temperature manipulation. The results of our study demonstrate that elevated temperature can have differential effects on host species, which can impact infestation susceptibility. Furthermore, changing climates could have complex net-effects on parasite fitness and host health across multi-host-parasite interactions.


Asunto(s)
Dípteros , Parásitos , Pájaros Cantores , Golondrinas , Animales , Temperatura , Interacciones Huésped-Parásitos
7.
Ecol Evol ; 12(10): e9399, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36225827

RESUMEN

The term terroir is used in viticulture to emphasize how the biotic and abiotic characteristics of a local site influence grape physiology and thus the properties of wine. In ecology and evolution, such terroir (i.e., the effect of space or "site") is expected to play an important role in shaping phenotypic traits. Just how important is the pure spatial effect of terroir (e.g., differences between sites that persist across years) in comparison to temporal variation (e.g., differences between years that persist across sites), and the interaction between space and time (e.g., differences between sites change across years)? We answer this question by analyzing beak and body traits of 4388 medium ground finches (Geospiza fortis) collected across 10 years at three locations in Galápagos. Analyses of variance indicated that phenotypic variation was mostly explained by site for beak size (η 2 = 0.42) and body size (η 2 = 0.43), with a smaller contribution for beak shape (η 2 = 0.05) and body shape (η 2 = 0.12), but still higher compared to year and site-by-year effects. As such, the effect of terroir seems to be very strong in Darwin's finches, notwithstanding the oft-emphasized interannual variation. However, these results changed dramatically when we excluded data from Daphne Major, indicating that the strong effect of terroir was mostly driven by that particular population. These phenotypic results were largely paralleled in analyses of environmental variables (rainfall and vegetation indices) expected to shape terroir in this system. These findings affirm the evolutionary importance of terroir, while also revealing its dependence on other factors, such as geographical isolation.

8.
G3 (Bethesda) ; 12(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34878103

RESUMEN

The invasive avian vampire fly (Philornis downsi, Diptera: Muscidae) is considered one of the greatest threats to the endemic avifauna of the Galápagos Islands. The fly larvae parasitize nearly every passerine species, including Darwin's finches. Most P. downsi research to date has focused on the effects of the fly on avian host fitness and mitigation methods. A lag in research related to the genetics of this invasion demonstrates, in part, the need to develop full-scale genomic resources with which to address further questions within this system. In this study, an adult female P. downsi was sequenced to generate a high-quality genome assembly. We examined various features of the genome (e.g., coding regions and noncoding transposable elements) and carried out comparative genomics analysis against other dipteran genomes. We identified lists of gene families that are significantly expanding or contracting in P. downsi that are related to insecticide resistance, detoxification, and counter defense against host immune responses. The P. downsi genome assembly provides an important resource for studying the molecular basis of successful invasion in the Galápagos and the dynamics of its population across multiple islands. The findings of significantly changing gene families associated with insecticide resistance and immune responses highlight the need for further investigations into the role of different gene families in aiding the fly's successful invasion. Furthermore, this genomic resource provides a necessary tool to better inform future research studies and mitigation strategies aimed at minimizing the fly's impact on Galápagos birds.


Asunto(s)
Pinzones , Muscidae , Parásitos , Animales , Ecuador/epidemiología , Femenino , Pinzones/genética , Pinzones/parasitología , Humanos , Larva , Muscidae/genética
9.
Anim Microbiome ; 3(1): 67, 2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34600588

RESUMEN

BACKGROUND: Changes in wild animal gut microbiotas may influence host health and fitness. While many studies have shown correlations between gut microbiota structure and external factors, few studies demonstrate causal links between environmental variables and microbiota shifts. Here, we use a fully factorial experiment to test the effects of elevated ambient temperature and natural nest parasitism by nest flies (Protocalliphora sialia) on the gut microbiotas of two species of wild birds, the eastern bluebird (Sialia sialis) and the tree swallow (Tachycineta bicolor). RESULTS: We find that bacterial communities from the nestlings of each host species show idiosyncratic responses to both heat and parasitism, with gut microbiotas of eastern bluebirds more disrupted by heat and parasitism than those of tree swallows. Thus, we find that eastern bluebirds are unable to maintain stable associations with their gut bacteria in the face of both elevated temperature and parasitism. In contrast, tree swallow gut microbiotas are not significantly impacted by either heat or nest parasitism. CONCLUSIONS: Our results suggest that excess heat (e.g., as a result of climate change) may destabilize natural host-parasite-microbiota systems, with the potential to affect host fitness and survival in the Anthropocene.

10.
J Exp Biol ; 224(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34427672

RESUMEN

The purpose of mounting an immune response is to destroy pathogens, but this response comes at a physiological cost, including the generation of oxidative damage. However, many studies on the effects of immune challenges employ a single high dose of a simulated infection, meaning that the consequences of more mild immune challenges are poorly understood. We tested whether the degree of immunological challenge in tree swallows (Tachycineta bicolor) affects oxidative physiology and body mass, and whether these metrics correlate with parasitic nest mite load. We injected 14 day old nestlings with 0, 0.01, 0.1 or 1 mg lipopolysaccharide (LPS) per kg body mass, then collected a blood sample 24 h later to quantify multiple physiological metrics, including oxidative damage (i.e. d-ROMs), circulating amounts of triglyceride and glycerol, and levels of the acute phase protein haptoglobin. After birds had fledged, we identified and counted parasitic nest mites (Dermanyssus spp. and Ornithonyssus spp.). We found that only nestlings injected with 1 mg LPS kg-1 body mass, which is a common dosage in ecoimmunological studies, lost more body mass than individuals from other treatment groups. However, every dose of LPS resulted in a commensurate increase in oxidative damage. Parasitic mite abundance had no effect on oxidative damage across treatments. The amount of oxidative damage correlated with haptoglobin levels, suggesting compensatory mechanisms to limit self-damage during an immune response. We conclude that while only the highest-intensity immune challenges resulted in costs related to body mass, even low-intensity immune challenges result in detectable increases in oxidative damage.


Asunto(s)
Infecciones Bacterianas , Ácaros , Golondrinas , Animales , Humanos , Estrés Oxidativo , Árboles
11.
Oecologia ; 196(4): 1207-1217, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34236465

RESUMEN

Global plastic production has increased exponentially since the 1940s, resulting in the increased presence of anthropogenic debris in the environment. Recent studies have shown that birds incorporate anthropogenic debris into their nests, which can reduce nest ectoparasite loads. However, we know little about the long-term history of interactions among birds, anthropogenic debris, and ectoparasites. Our study took a unique approach to address this issue by determining the prevalence of anthropogenic debris and ectoparasitic nest flies (Protocalliphora and Passeromyia spp.) in 893 bird nests from 224 species between 1832 and 2018, which were sourced from Australian museum collections. The prevalence of anthropogenic material increased from approximately 4% in 1832 to almost 30% in 2018. This change was driven by an increase in the incorporation of synthetic rather than biodegradable anthropogenic debris (by 2018 ~ 25% of all nests contained synthetics), with the first synthetic item being found in a nest from 1956 in the city of Melbourne. Nest parasite prevalence increased over time but contrary to other studies, there was no relationship between habitat type or anthropogenic material and parasite presence. Our study is the first to use museum specimens to quantify temporal and spatial impacts of anthropogenic material on birds, the results of which justifies contemporary concerns regarding the ubiquitous nature of human impacts on terrestrial wildlife.


Asunto(s)
Parásitos , Animales , Australia , Aves , Humanos , Comportamiento de Nidificación , Plásticos , Prevalencia
12.
Ecol Evol ; 11(12): 7713-7729, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34188846

RESUMEN

Anthropogenic changes to the environment challenge animal populations to adapt to new conditions and unique threats. While the study of adaptation has focused on genetic variation, epigenetic mechanisms may also be important. DNA methylation is sensitive to environmental stressors, such as parasites and pesticides, which may affect gene expression and phenotype. We studied the effects of an invasive ectoparasite, Philornis downsi, on DNA methylation of Galápagos mockingbirds (Mimus parvulus). We used the insecticide permethrin to manipulate P. downsi presence in nests of free-living mockingbirds and tested for effects of parasitism on nestling mockingbirds using epiGBS, a reduced-representation bisulfite sequencing (RRBS) approach. To distinguish the confounding effects of insecticide exposure, we conducted a matching experiment exposing captive nestling zebra finches (Taeniopygia guttata) to permethrin. We used zebra finches because they were the closest model organism to mockingbirds that we could breed in controlled conditions. We identified a limited number of differentially methylated cytosines (DMCs) in parasitized versus nonparasitized mockingbirds, but the number was not more than expected by chance. In contrast, we saw clear effects of permethrin on methylation in captive zebra finches. DMCs in zebra finches paralleled documented effects of permethrin exposure on vertebrate cellular signaling and endocrine function. Our results from captive birds indicate a role for epigenetic processes in mediating sublethal nontarget effects of pyrethroid exposure in vertebrates. Environmental conditions in the field were more variable than the laboratory, which may have made effects of both parasitism and permethrin harder to detect in mockingbirds. RRBS approaches such as epiGBS may be a cost-effective way to characterize genome-wide methylation profiles. However, our results indicate that ecological epigenetic studies in natural populations should consider the number of cytosines interrogated and the depth of sequencing in order to have adequate power to detect small and variable effects.

13.
Ecol Evol ; 11(10): 5038-5048, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34025990

RESUMEN

Urbanization is expanding worldwide with major consequences for organisms. Anthropogenic factors can reduce the fitness of animals but may have benefits, such as consistent human food availability. Understanding anthropogenic trade-offs is critical in environments with variable levels of natural food availability, such as the Galápagos Islands, an area of rapid urbanization. For example, during dry years, the reproductive success of bird species, such as Darwin's finches, is low because reduced precipitation impacts food availability. Urban areas provide supplemental human food to finches, which could improve their reproductive success during years with low natural food availability. However, urban finches might face trade-offs, such as the incorporation of anthropogenic debris (e.g., string, plastic) into their nests, which may increase mortality. In our study, we determined the effect of urbanization on the nesting success of small ground finches (Geospiza fuliginosa; a species of Darwin's finch) during a dry year on San Cristóbal Island. We quantified nest building, egg laying and hatching, and fledging in an urban and nonurban area and characterized the anthropogenic debris in nests. We also documented mortalities including nest trash-related deaths and whether anthropogenic materials directly led to entanglement- or ingestion-related nest mortalities. Overall, urban finches built more nests, laid more eggs, and produced more fledglings than nonurban finches. However, every nest in the urban area contained anthropogenic material, which resulted in 18% nestling mortality while nonurban nests had no anthropogenic debris. Our study showed that urban living has trade-offs: urban birds have overall higher nesting success during a dry year than nonurban birds, but urban birds can suffer mortality from anthropogenic-related nest-materials. These results suggest that despite potential costs, finches benefit overall from urban living and urbanization may buffer the effects of limited resource availability in the Galápagos Islands.

14.
Conserv Physiol ; 8(1): coaa076, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32908668

RESUMEN

Permethrin is increasingly used for parasite control in bird nests, including nests of threatened passerines. We present the first formal evaluation of the effects of continued permethrin exposure on the reproductive success and liver function of a passerine, the zebra finch (Taeniopygia guttata), for two generations. We experimentally treated all nest material with a 1% permethrin solution or a water control and provided the material to breeding finches for nest building. The success of two consecutive clutches produced by the parental generation and one clutch produced by first-generation birds were tracked. Finches in the first generation were able to reproduce and fledge offspring after permethrin exposure, ruling out infertility. Permethrin treatment had no statistically significant effect on the number of eggs laid, number of days from clutch initiation to hatching, egg hatch rate, fledgling mass or nestling sex ratio in either generation. However, treating nest material with permethrin significantly increased the number of hatchlings in the first generation and decreased fledgling success in the second generation. Body mass for hatchlings exposed to permethrin was lower than for control hatchlings in both generations, but only statistically significant for the second generation. For both generations, an interaction between permethrin treatment and age significantly affected nestling growth. Permethrin treatment had no effect on liver function for any generation. Permethrin was detected inside 6 of 21 exposed, non-embryonated eggs (28.5% incidence; range: 693-4781 ng of permethrin per gram of dry egg mass). Overall, results from exposing adults, eggs and nestlings across generations to permethrin-treated nest material suggest negative effects on finch breeding success, but not on liver function. For threatened bird conservation, the judicious application of this insecticide to control parasites in nests can result in lower nestling mortality compared to when no treatment is applied. Thus, permethrin treatment benefits may outweigh its sub-lethal effects.

15.
Parasitol Res ; 119(7): 2337-2342, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32500371

RESUMEN

Philornis flies Meinert (Diptera: Muscidae) have been documented parasitizing over 250 bird species, some of which are endemic species threatened with extinction. Philornis parasitism is hypothesized to affect nestlings disproportionately more than adult birds because limited mobility and exposed skin of nestlings increase their vulnerability to parasitism. We used a comprehensive literature review and our recent fieldwork in the Dominican Republic, Puerto Rico, and Grenada to challenge the idea that parasitism by subcutaneous Philornis species is a phenomenon primarily found in nestlings, a fact that has not been quantified to date. Of the 265 reviewed publications, 125 (49%) reported incidences of parasitism by subcutaneous Philornis, but only 12 included the sampling of adult breeding birds. Nine of these publications (75%) reported Philornis parasitism in adults of ten bird species. During fieldwork in the Dominican Republic, Puerto Rico, and Grenada, we documented 14 instances of parasitism of adult birds of seven avian species. From literature review and fieldwork, adults of at least fifteen bird species across 12 families and four orders of birds were parasitized by at least five Philornis species. In both the published literature and fieldwork, incidences of parasitism of adult birds occurred predominantly in females and was frequently associated with incubation. Although our findings indicate that Philornis parasitism of adult birds is more common than widely presumed, parasite prevalence is still greater in nestlings. In the future, we recommend surveys of adult birds to better understand host-Philornis relationships across life stages. This information may be essential for the development of effective control measures of Philornis to ensure the long-term protection of bird species of conservation concern.


Asunto(s)
Aves/parasitología , Muscidae/fisiología , Animales , Aves/clasificación , Femenino , Incidencia , Larva/clasificación , Larva/fisiología , Masculino , Muscidae/clasificación , Comportamiento de Nidificación , Prevalencia , Indias Occidentales/epidemiología
16.
Ecology ; 101(4): e02979, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31960949

RESUMEN

Complex ecological relationships, such as host-parasite interactions, are often modeled with laboratory experiments. However, some experimental laboratory conditions, such as temperature or infection dose, are regularly chosen based on convenience or convention, and it is unclear how these decisions systematically affect experimental outcomes. Here, we conducted a meta-analysis of 58 laboratory studies that exposed amphibians to the pathogenic fungus Batrachochytrium dendrobatidis (Bd) to understand better how laboratory temperature, host life stage, infection dose, and host species affect host mortality. We found that host mortality was driven by thermal mismatches: hosts native to cooler environments experienced greater Bd-induced mortality at relatively warm experimental temperatures and vice versa. We also found that Bd dose positively predicted Bd-induced host mortality and that the superfamilies Bufonoidea and Hyloidea were especially susceptible to Bd. Finally, the effect of Bd on host mortality varied across host life stages, with larval amphibians experiencing lower risk of Bd-induced mortality than adults or metamorphs. Metamorphs were especially susceptible and experienced mortality when inoculated with much smaller Bd doses than the average dose used by researchers. Our results suggest that when designing experiments on species interactions, researchers should carefully consider the experimental temperature, inoculum dose, and life stage, and taxonomy of the host species.


Asunto(s)
Quitridiomicetos , Micosis , Parásitos , Animales , Anuros , Temperatura
17.
Ecol Evol ; 9(21): 12144-12155, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31832149

RESUMEN

Hosts have developed and evolved defense strategies to limit parasite damage. Hosts can reduce the damage that parasites cause by decreasing parasite fitness (resistance) or without affecting parasite fitness (tolerance). Because a parasite species can infect multiple host species, determining the effect of the parasite on these hosts and identifying host defense strategies can have important implications for multi-host-parasite dynamics.Over 2 years, we experimentally manipulated parasitic flies (Protocalliphora sialia) in the nests of tree swallows (Tachycineta bicolor) and eastern bluebirds (Sialia sialis). We then determined the effects of the parasites on the survival of nestlings and compared defense strategies between host species. We compared resistance between host species by quantifying parasite densities (number of parasites per gram of host) and measured nestling antibody levels as a mechanism of resistance. We quantified tolerance by determining the relationship between parasite density and nestling survival and blood loss by measuring hemoglobin levels (as a proxy of blood recovery) and nestling provisioning rates (as a proxy of parental compensation for resources lost to the parasite) as potential mechanisms of tolerance.For bluebirds, parasite density was twice as high as for swallows. Both host species were tolerant to the effects of P. sialia on nestling survival at their respective parasite loads but neither species were tolerant to the blood loss to the parasite. However, swallows were more resistant to P. sialia compared to bluebirds, which was likely related to the higher antibody-mediated immune response in swallow nestlings. Neither blood recovery nor parental compensation were mechanisms of tolerance.Overall, these results suggest that bluebirds and swallows are both tolerant of their respective parasite loads but swallows are more resistant to the parasites. These results demonstrate that different host species have evolved similar and different defenses against the same species of parasite.

18.
Proc Biol Sci ; 286(1916): 20192290, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31795872

RESUMEN

Disruptive natural selection within populations exploiting different resources is considered to be a major driver of adaptive radiation and the production of biodiversity. Fitness functions, which describe the relationships between trait variation and fitness, can help to illuminate how this disruptive selection leads to population differentiation. However, a single fitness function represents only a particular selection regime over a single specified time period (often a single season or a year), and therefore might not capture longer-term dynamics. Here, we build a series of annual fitness functions that quantify the relationships between phenotype and apparent survival. These functions are based on a 9-year mark-recapture dataset of over 600 medium ground finches (Geospiza fortis) within a population bimodal for beak size. We then relate changes in the shape of these functions to climate variables. We find that disruptive selection between small and large beak morphotypes, as reported previously for 2 years, is present throughout the study period, but that the intensity of this selection varies in association with the harshness of environment. In particular, we find that disruptive selection was strongest when precipitation was high during the dry season of the previous year. Our results shed light on climatic factors associated with disruptive selection in Darwin's finches, and highlight the role of temporally varying fitness functions in modulating the extent of population differentiation.


Asunto(s)
Pinzones/fisiología , Selección Genética , Animales , Pico , Ecuador , Pinzones/genética , Fenotipo
19.
Proc Biol Sci ; 286(1897): 20190049, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30963843

RESUMEN

When confronted with a parasite or pathogen, hosts can defend themselves by resisting or tolerating the attack. While resistance can be diminished when resources are limited, it is unclear how robust tolerance is to changes in environmental conditions. Here, we investigate the sensitivity of tolerance in a single host population living in a highly variable environment. We manipulated the abundance of an invasive parasitic fly, Philornis downsi, in nests of Galápagos mockingbirds ( Mimus parvulus) over four field seasons and measured host fitness in response to parasitism. Mockingbird tolerance to P. downsi varied significantly among years and decreased when rainfall was limited. Video observations indicate that parental provisioning of nestlings appears key to tolerance: in drought years, mockingbirds likely do not have sufficient resources to compensate for the effects of P. downsi. These results indicate that host tolerance is a labile trait and suggest that environmental variation plays a major role in mediating the consequences of host-parasite interactions.


Asunto(s)
Interacciones Huésped-Parásitos , Especies Introducidas , Muscidae/fisiología , Pájaros Cantores/fisiología , Pájaros Cantores/parasitología , Animales , Ambiente , Aptitud Genética , Lluvia , Estaciones del Año , Pájaros Cantores/genética
20.
Mol Ecol ; 28(9): 2441-2450, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31021499

RESUMEN

The gut microbiota of animal hosts can be influenced by environmental factors, such as unnatural food items that are introduced by humans. Over the past 30 years, human presence has grown exponentially in the Galapagos Islands, which are home to endemic Darwin's finches. Consequently, humans have changed the environment and diet of Darwin's finches, which in turn, could affect their gut microbiota. In this study, we compared the gut microbiota of two species of Darwin's finches, small ground finches (Geospiza fuliginosa) and medium ground finches (Geospiza fortis), across sites with and without human presence, where finches prefer human-processed and natural food, respectively. We predicted that: (a) finch microbiota would differ between sites with and without humans due to differences in diet, and (b) gut microbiota of each finch species would be most similar where finches have the highest niche overlap (areas with humans) compared to the lowest niche overlap (areas without humans). We found that gut bacterial community structure differed across sites and host species. Gut bacterial diversity was most distinct between the two species at the site with human presence compared to the site without human presence, which contradicted our predictions. Within host species, medium ground finches had lower bacterial diversity at the site with human presence compared to the site without human presence and bacterial diversity of small ground finches did not differ between sites. Our results show that the gut microbiota of Darwin's finches is affected differently across sites with varying human presence.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Passeriformes/microbiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Biodiversidad , Peso Corporal , Ecosistema , Ecuador , Femenino , Pinzones/microbiología , Microbioma Gastrointestinal/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...