Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Support Care Cancer ; 32(8): 544, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046568

RESUMEN

PURPOSE: Muscle radiodensity loss after surgery and adjuvant chemotherapy is associated with poor outcomes in ovarian cancer. Assessing muscle radiodensity is a real-world clinical challenge owing to the requirement for computed tomography (CT) with consistent protocols and labor-intensive processes. This study aimed to use interpretable machine learning (ML) to predict muscle radiodensity loss. METHODS: This study included 723 patients with ovarian cancer who underwent primary debulking surgery and platinum-based chemotherapy between 2010 and 2019 at two tertiary centers (579 in cohort 1 and 144 in cohort 2). Muscle radiodensity was assessed from pre- and post-treatment CT acquired with consistent protocols, and a decrease in radiodensity ≥ 5% was defined as loss. Six ML models were trained, and their performances were evaluated using the area under the curve (AUC) and F1-score. The SHapley Additive exPlanations (SHAP) method was applied to interpret the ML models. RESULTS: The CatBoost model achieved the highest AUC of 0.871 (95% confidence interval, 0.870-0.874) and F1-score of 0.688 (95% confidence interval, 0.685-0.691) among the models in the training set and outperformed in the external validation set, with an AUC of 0.839 and F1-score of 0.673. Albumin change, ascites, and residual disease were the most important features associated with a higher likelihood of muscle radiodensity loss. The SHAP force plot provided an individualized interpretation of model predictions. CONCLUSION: An interpretable ML model can assist clinicians in identifying ovarian cancer patients at risk of muscle radiodensity loss after treatment and understanding the contributors of muscle radiodensity loss.


Asunto(s)
Aprendizaje Automático , Neoplasias Ováricas , Tomografía Computarizada por Rayos X , Humanos , Femenino , Neoplasias Ováricas/patología , Persona de Mediana Edad , Tomografía Computarizada por Rayos X/métodos , Anciano , Estudios Retrospectivos , Adulto , Quimioterapia Adyuvante/métodos , Quimioterapia Adyuvante/efectos adversos , Procedimientos Quirúrgicos de Citorreducción/métodos
2.
J Cachexia Sarcopenia Muscle ; 14(5): 2044-2053, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37435785

RESUMEN

BACKGROUND: Skeletal muscle loss during treatment is associated with poor survival outcomes in patients with ovarian cancer. Although changes in muscle mass can be assessed on computed tomography (CT) scans, this labour-intensive process can impair its utility in clinical practice. This study aimed to develop a machine learning (ML) model to predict muscle loss based on clinical data and to interpret the ML model by applying SHapley Additive exPlanations (SHAP) method. METHODS: This study included the data of 617 patients with ovarian cancer who underwent primary debulking surgery and platinum-based chemotherapy at a tertiary centre between 2010 and 2019. The cohort data were split into training and test sets based on the treatment time. External validation was performed using 140 patients from a different tertiary centre. The skeletal muscle index (SMI) was measured from pre- and post-treatment CT scans, and a decrease in SMI ≥ 5% was defined as muscle loss. We evaluated five ML models to predict muscle loss, and their performance was determined using the area under the receiver operating characteristic curve (AUC) and F1 score. The features for analysis included demographic and disease-specific characteristics and relative changes in body mass index (BMI), albumin, neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR). The SHAP method was applied to determine the importance of the features and interpret the ML models. RESULTS: The median (inter-quartile range) age of the cohort was 52 (46-59) years. After treatment, 204 patients (33.1%) experienced muscle loss in the training and test datasets, while 44 (31.4%) patients experienced muscle loss in the external validation dataset. Among the five evaluated ML models, the random forest model achieved the highest AUC (0.856, 95% confidence interval: 0.854-0.859) and F1 score (0.726, 95% confidence interval: 0.722-0.730). In the external validation, the random forest model outperformed all ML models with an AUC of 0.874 and an F1 score of 0.741. The results of the SHAP method showed that the albumin change, BMI change, malignant ascites, NLR change, and PLR change were the most important factors in muscle loss. At the patient level, SHAP force plots demonstrated insightful interpretation of our random forest model to predict muscle loss. CONCLUSIONS: Explainable ML model was developed using clinical data to identify patients experiencing muscle loss after treatment and provide information of feature contribution. Using the SHAP method, clinicians may better understand the contributors to muscle loss and target interventions to counteract muscle loss.


Asunto(s)
Músculo Esquelético , Neoplasias Ováricas , Humanos , Femenino , Persona de Mediana Edad , Músculo Esquelético/diagnóstico por imagen , Quimioterapia Adyuvante , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/cirugía , Albúminas , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...