Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Korean J Physiol Pharmacol ; 28(3): 209-217, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682169

RESUMEN

In addition to cellular damage, ischemia-reperfusion (IR) injury induces substantial damage to the mitochondria and endoplasmic reticulum. In this study, we sought to determine whether impaired mitochondrial function owing to IR could be restored by transplanting mitochondria into the heart under ex vivo IR states. Additionally, we aimed to provide preliminary results to inform therapeutic options for ischemic heart disease (IHD). Healthy mitochondria isolated from autologous gluteus maximus muscle were transplanted into the hearts of Sprague-Dawley rats damaged by IR using the Langendorff system, and the heart rate and oxygen consumption capacity of the mitochondria were measured to confirm whether heart function was restored. In addition, relative expression levels were measured to identify the genes related to IR injury. Mitochondrial oxygen consumption capacity was found to be lower in the IR group than in the group that underwent mitochondrial transplantation after IR injury (p < 0.05), and the control group showed a tendency toward increased oxygen consumption capacity compared with the IR group. Among the genes related to fatty acid metabolism, Cpt1b (p < 0.05) and Fads1 (p < 0.01) showed significant expression in the following order: IR group, IR + transplantation group, and control group. These results suggest that mitochondrial transplantation protects the heart from IR damage and may be feasible as a therapeutic option for IHD.

3.
J Neurosci Res ; 102(4): e25323, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38553948

RESUMEN

Previously, we reported that prenatal exposure to high corticosterone induced attention-deficit hyperactivity disorder (ADHD)-like behaviors with cognitive deficits after weaning. In the present study, cellular mechanisms underlying cortisol-induced cognitive dysfunction were investigated using rat pups (Corti.Pups) born from rat mothers that were repetitively injected with corticosterone during pregnancy. In results, Corti.Pups exhibited the failure of behavioral memory formation in the Morris water maze (MWM) test and the incomplete long-term potentiation (LTP) of hippocampal CA1 neurons. Additionally, glutamatergic excitatory postsynaptic currents (EPSCs) were remarkably suppressed in Corti.Pups compared to normal rat pups. Incomplete LTP and weaker EPSCs in Corti.Pups were attributed to the delayed postsynaptic development of CA1 neurons, showing a higher expression of NR2B subunits and lower expression of PSD-95 and BDNF. These results indicated that the prenatal treatment with corticosterone to elevate cortisol level might potently downregulate the BDNF-mediated signaling critical for the synaptic development of hippocampal CA1 neurons during brain development, and subsequently, induce learning and memory impairment. Our findings suggest a possibility that the prenatal dysregulation of cortisol triggers the epigenetic pathogenesis of neurodevelopmental psychiatric disorders, such as ADHD and autism.


Asunto(s)
Corticosterona , Hidrocortisona , Humanos , Embarazo , Femenino , Ratas , Animales , Corticosterona/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Aprendizaje por Laberinto/fisiología , Hipocampo/metabolismo , Potenciación a Largo Plazo , Neuronas/metabolismo , Trastornos de la Memoria/metabolismo
4.
Korean J Physiol Pharmacol ; 27(1): 85-94, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36575936

RESUMEN

Ion channels regulate a large number of cellular functions and their functional role in many diseases makes them potential therapeutic targets. Given their diverse distribution across multiple organs, the roles of ion channels, particularly in age-associated transcriptomic changes in specific organs, are yet to be fully revealed. Using RNA-seq data, we investigated the rat transcriptomic profiles of ion channel genes across 11 organs/tissues and 4 developmental stages in both sexes of Fischer 344 rats and identify tissue-specific and age-dependent changes in ion channel gene expression. Organ-enriched ion channel genes were identified. In particular, the brain showed higher tissue-specificity of ion channel genes, including Gabrd, Gabra6, Gabrg2, Grin2a, and Grin2b. Notably, age-dependent changes in ion channel gene expression were prominently observed in the thymus, including in Aqp1, Clcn4, Hvcn1, Itpr1, Kcng2, Kcnj11, Kcnn3, and Trpm2. Our comprehensive study of ion channel gene expression will serve as a primary resource for biological studies of aging-related diseases caused by abnormal ion channel functions.

6.
J Int Med Res ; 50(7): 3000605221113911, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35903880

RESUMEN

OBJECTIVE: To undertake a comprehensive analysis of the differential expression of the G protein-coupled receptor (GPCR) genes in order to construct a GPCR gene signature for human glioma prognosis. METHODS: This current study investigated several glioma transcriptomic datasets and identified the GPCR genes potentially associated with glioma severity. RESULTS: A gene signature comprising 13 GPCR genes (nine upregulated and four downregulated genes in high-grade glioma) was developed. The predictive power of the 13-gene signature was tested in two validation cohorts and a strong positive correlation (Spearman's rank correlation test: ρ = 0.649 for the Validation1 cohort; ρ = 0.693 for the Validation2 cohort) was observed between the glioma grade and 13-gene based severity score in both cohorts. The 13-gene signature was also predictive of glioma prognosis based on Kaplan-Meier survival curve analyses and Cox proportional hazard regression analysis in four cohorts of patients with glioma. CONCLUSIONS: Knowledge of GPCR gene expression in glioma may help researchers gain a better understanding of the pathogenesis of high-grade glioma. Further studies are needed to validate the association between these GPCR genes and glioma pathogenesis.


Asunto(s)
Neoplasias Encefálicas , Glioma , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Estudios de Cohortes , Glioma/diagnóstico , Glioma/genética , Glioma/metabolismo , Humanos , Estimación de Kaplan-Meier , Pronóstico , Transcriptoma
7.
Microbiol Spectr ; 10(1): e0161421, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35171037

RESUMEN

The antigen-based rapid diagnostic test (Ag-RDT) using saliva specimens is fast, noninvasive, and suitable for SARS-CoV-2 self-testing, unlike nasopharyngeal swab (NPS) testing. We evaluated a novel Beanguard gargle (BG)-based virus collection method that can be applied to Ag-RDT as an alternative to the current RT-PCR with an NPS for early diagnosis of COVID-19. This clinical trial comprised 102 COVID-19-positive patients hospitalized after a governmental screening process and 100 healthy individuals. Paired NPS and BG-based saliva specimens from COVID-19 patients and healthy individuals were analyzed using NPS-RT-PCR, BG-RT-PCR, and BG-Ag-RDTs, whose diagnostic performance for detecting SARS-CoV-2 was compared. BG-Ag-RDTs showed high sensitivity (97.8%) and specificity (100%) in 45 patients within 6 days of illness and detected all cases of SARS-CoV-2 Alpha and Delta variants. In 11 asymptomatic active COVID-19 cases, both BG-Ag-RDTs and BG-RT-PCR showed sensitivities and specificities of 100%. Sensitivities of BG-Ag-RDT and BG-RT-PCR toward salivary viral detection were highly concordant, with no discrimination between symptomatic (97.0%), asymptomatic (100%), or SARS-CoV-2 variant (100%) cases. The intermolecular interactions between SARS-CoV-2 spike proteins and truncated canavalin, an active ingredient from the bean extract (BE), were observed in terms of physicochemical properties. The detachment of the SARS-CoV-2 receptor-binding domain from hACE2 increased as the BE concentration increased, allowing the release of the virus from hACE2 for early diagnosis. Using BG-based saliva specimens remarkably enhances the Ag-RDT diagnostic performance as an alternative to NPS and enables noninvasive, rapid, and accurate COVID-19 self-testing and mass screening, supporting efficient COVID-19 management. IMPORTANCE An Ag-RDT is less likely to be accepted as an initial test method for early diagnosis owing to its low sensitivity. However, our self-collection method, Ag-RDT using BG-based saliva specimens, showed significantly enhanced detection sensitivity and specificity toward SARS-CoV-2 including the Alpha and Delta variants in all patients tested within 6 days of illness. The method represents an attractive alternative to nasopharyngeal swabs for the early diagnosis of symptomatic and asymptomatic COVID-19 cases. The evidence suggests that the method could have a potential for mass screening and monitoring of COVID-19 cases.


Asunto(s)
Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/aislamiento & purificación , Saliva/virología , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19 , Prueba Serológica para COVID-19/instrumentación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nasofaringe/virología , República de Corea , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Sensibilidad y Especificidad , Adulto Joven
8.
Mikrochim Acta ; 188(11): 382, 2021 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-34657212

RESUMEN

A sensitive on-site mercury sensing platform was developed for simple and effective monitoring of mercury levels in the field. The simple and practical mercury detection system was designed by integrating an Au nanoparticle-PEG hydrogel block nanozyme (Au-HBNz) into a polymer film-based colorimetric device. Upon addition of Hg2+ ions, Au-HBNz exhibited excellent peroxidase-like activity, catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine into a blue-colored product, which has a maximum absorbance at 652 nm. The resulting color intensity change was evaluated using a smartphone for simple and rapid Hg2+ detection with a broad detection range (0.008-20 µg∙mL-1) and a linear concentration-response relationship (R2 = 0.96). The detection limit (1.10 ng∙mL-1) was lower than the maximum permissible Hg2+ levels in drinking water set by the World Health Organization (6 ng∙mL-1) and U.S. Environmental Protection Agency (2 ng∙mL-1). The recoveries of Hg2+ determination in river water by spiking Hg2+ samples ranged from 92 to 106%, which indicated high validity and applicability of the Hg2+ detection system for field measurements. Thus, the developed sensor enables highly selective and efficient real-time monitoring of Hg2+.


Asunto(s)
Colorimetría/métodos , Agua Dulce/química , Oro/química , Hidrogeles/química , Mercurio/química , Nanopartículas del Metal/química , Ríos
9.
Inorg Chem ; 60(11): 7914-7921, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34009974

RESUMEN

Crystals of two strontium niobium oxyfluorides, Sr2Nb6O13F8·4H2O and Sr3Nb2O2F12·2H2O, have been grown in phase pure forms via hydrothermal reactions using SrCO3, Nb2O5, and an aqueous HF solution. Single-crystal X-ray diffraction suggests that Sr2Nb6O13F8·4H2O, crystallizing in the orthorhombic centrosymmetric space group, Pbam (No. 55), reveals a new variant of the three-dimensional tungsten bronze structure with three-, four-, and five-membered rings that are composed of corner-sharing NbO2(O/F)2F2, NbO4(O/F)F, NbO3(O/F)3, and SrO3F6 groups. Sr3Nb2O2F12·2H2O with the noncentrosymmetric polar space group, Cmc21 (No. 36), however, reveals a molecular structure consisting of Nb(O/F)2F5 pentagonal bipyramids and two unique Sr2+ cations interacting with F, O/F, and water molecules. Band gaps calculated by the Kubelka-Munk function based on the ultraviolet-visible diffuse-reflectance spectra of Sr2Nb6O13F8·4H2O and Sr3Nb2O2F12·2H2O are estimated to be ca. 3.22 and 4.11 eV, respectively, in which the values are related to the contents of electronegative F atoms and the Nb-O(F)-Nb bond angles influenced by structural distortion. An interesting phase transition reaction from Sr3Nb2O2F12·2H2O to thermodynamically more stable Sr2Nb6O13F8·4H2O occurs under a hydrothermal condition.

10.
Sci Rep ; 11(1): 6616, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758305

RESUMEN

This study sought to develop a novel diagnostic tool for atopic dermatitis (AD). Mouse transcriptome data were obtained via RNA-sequencing of dorsal skin tissues of CBA/J mice affected with contact hypersensitivity (induced by treatment with 1-chloro-2,4-dinitrobenzene) or brush stimulation-induced AD-like skin condition. Human transcriptome data were collected from German, Swedish, and American cohorts of AD patients from the Gene Expression Omnibus database. edgeR and SAM algorithms were used to analyze differentially expressed murine and human genes, respectively. The FAIME algorithm was then employed to assign pathway scores based on KEGG pathway database annotations. Numerous genes and pathways demonstrated similar dysregulation patterns in both the murine models and human AD. Upon integrating transcriptome information from both murine and human data, we identified 36 commonly dysregulated differentially expressed genes, which were designated as a 36-gene signature. A severity score (AD index) was applied to each human sample to assess the predictive power of the 36-gene AD signature. The diagnostic power and predictive accuracy of this signature were demonstrated for both AD severity and treatment outcomes in patients with AD. This genetic signature is expected to improve both AD diagnosis and targeted preclinical research.


Asunto(s)
Biomarcadores , Dermatitis Atópica/etiología , Perfilación de la Expresión Génica , Transcriptoma , Animales , Biología Computacional/métodos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Humanos , Ratones
11.
Exp Neurobiol ; 30(1): 87-100, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33632985

RESUMEN

High levels of cortisol in blood are frequently observed in patients with major depressive disorders and increased cortisol level induces depressivelike symptoms in animal models. However, it is still unclear whether maternal cortisol level during pregnancy is a critical factor resulting in neuropsychiatric disorders in offspring. In this study, we increased cortisol level in rats by repetitively injecting corticosterone subcutaneously (Corti. Mom, 20 mg/kg/day) during pregnancy and evaluated the behavioral patterns of their pups (Corti.Pups) via forced swimming (FS), open field (OF), elevated plus maze (EPM) and Morris water maze (MWM) tests during the immediate post-weaning period (postnatal day 21 to 25). In results, corticosterone significantly increased plasma cortisol levels in both Corti.Moms and Corti.Pups. Unlike depressive animal models, Corti.Pups showed higher hyperactive behaviors in the FS and OF tests than normal pups (Nor.Pups) born from rats (Nor.Moms) treated with saline. Furthermore, Corti.Pups spent more time and traveled longer distance in the open arms of EPM test, exhibiting higher extremity. These patterns were consistent with behavioral symptoms observed in animal models of attention deficit hyperactivity disorder (ADHD), which is characterized by hyperactivity, impulsivity, and inattention. Additionally, Corti.Pups swam longer and farther to escape in MWM test, showing cognitive declines associated with attention deficit. Our findings provide evidence that maternal cortisol level during pregnancy may affect the neuroendocrine regulation and the brain development of offspring, resulting in heterogeneous developmental brain disorders such as ADHD.

12.
Exp Neurobiol ; 30(1): 73-86, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33424017

RESUMEN

Nobiletin, a polymethoxylated flavonoid found in citrus, has been studied because of its modulatory functions in cellular signaling cascades, and effects to prevent mitochondrial calcium overload and neuronal cell death. Particularly, we previously reported that nobiletin induced changes in the mitochondrial membrane potential through K+ channel regulation, suggesting that nobiletin might exert neuroprotective effects via regulating mitochondrial functions associated with the electron transport chain (ETC) system. This study investigated whether nobiletin regulated mitochondrial dysfunction mediated by ETC system downregulation by inhibiting complex I (CI) and complex III (CIII) in pure mitochondria and the cortical neurons of rats. The results showed that nobiletin significantly reduced mitochondrial reactive oxygen species (ROS) production, inhibited apoptotic signaling, enhanced ATP production and then restored neuronal viability under conditions of CI inhibition, but not CIII inhibition. These effects were attributed to the downregulation of translocation of apoptosis-induced factor (AIF), and the upregulation of CI activity and the expression of antioxidant enzymes such as Nrf2 and HO-1. Together with our previous study, these results indicate that the neuroprotective effects of nobiletin under mitochondrial dysfunction may be associated with its function to activate antioxidant signaling cascades. Our findings suggest the possibility that nobiletin has therapeutic potential in treating oxidative neurological and neurodegenerative diseases mediated by mitochondrial dysfunction.

13.
Neurotox Res ; 38(4): 900-913, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32910305

RESUMEN

The venom of jellyfish triggers severe dermal pain along with inflammation and tissue necrosis, and occasionally, induces internal organ dysfunction. However, the basic mechanisms underlying its cytotoxic effects are still unknown. Here, we report one of the mechanisms involved in peripheral pain modulation associated with inflammatory and neurotoxic oxidative signaling in rats using the venom of jellyfish, Chrysaora pacifica (CpV). This jellyfish is identified by brown tentacles carrying nematocysts filled with cytotoxic venom that induces severe pain, pruritus, tentacle marks, and blisters. The subcutaneous injection of CpV into rat forepaws in behavioral tests triggered nociceptive response with a decreased threshold for mechanical pain perception. These responses lasted up to 48 h and were completely blocked by verapamil and TTA-P2, T-type Ca2+ channel blockers, or HC030031, a transient receptor potential cation ankyrin 1 (TRPA1) channel blocker, while another Ca2+ channel blocker, nimodipine, was ineffective. Also, treatment with Ca2+ chelators (EGTA and BaptaAM) significantly alleviated the CpV-induced pain response. These results indicate that CpV-induced pain modulation may require both Ca2+ influx through the T-type Ca2+ channels and activation of TRPA1 channels. Furthermore, CpV induced Ca2+-mediated oxidative neurotoxicity in the dorsal root ganglion (DRG) and cortical neurons dissociated from rats, resulting in decreased neuronal viability and increased intracellular levels of ROS. Taken together, CpV may activate Ca2+-mediated oxidative signaling to produce excessive ROS acting as an endogenous agonist of TRPA1 channels in the peripheral terminals of the primary afferent neurons, resulting in persistent inflammatory pain. These findings provide strong evidence supporting the therapeutic effectiveness of blocking oxidative signaling against pain and cytotoxicity induced by jellyfish venom.


Asunto(s)
Calcio/metabolismo , Venenos de Cnidarios/toxicidad , Neuralgia/inducido químicamente , Neuralgia/metabolismo , Dimensión del Dolor/métodos , Canal Catiónico TRPA1/metabolismo , Animales , Venenos de Cnidarios/administración & dosificación , Venenos de Cnidarios/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Inyecciones Subcutáneas , Masculino , Ratas , Ratas Sprague-Dawley
14.
Transl Oncol ; 13(2): 233-240, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31869747

RESUMEN

BACKGROUND: Alpha-type platelet-derived growth factor receptor (PDGFRα) is a cell surface tyrosine kinase receptor for members of the platelet-derived growth factor family. PDGFRα plays an important role in the regulation of several biological processes and contributes to the pathophysiology of a broad range of human cancers, including glioma. Here, we hypothesize that the genes directly or indirectly influenced by PDGFRα might be useful for prognosis in glioma. METHODS: By comparing the genome-wide gene expression pattern between PDGFRα+ and PDGFRα- cells from human oligodendrocyte progenitor, we defined the genes potentially influenced by PDGFRα. RESULTS: The PDGFRα-influenced genes are strongly associated with cancer-related pathways. We subsequently developed a prognostic gene signature derived from the PDGFRα-influenced genes. This gene signature is able to predict clinical outcome of glioma. This signature is also independent of traditional prognostic factors of glioma. Resampling tests indicate that the prognostic power of this gene signature outperforms random gene sets selected from human genome. More importantly, this signature is superior to the random gene signatures selected from glioma related genes. CONCLUSIONS: Despite the absence of clear elucidation of molecular mechanisms, this study suggests the vital role of PDGFRα in carcinogenesis. Furthermore, the PDGFRα-based gene signature provides a promising prognostic tool for glioma and validates PDGFRα as a novel and effective therapeutic target in human cancers.

15.
Korean J Physiol Pharmacol ; 23(6): 529-537, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31680775

RESUMEN

Lung cancer is the most common cause of cancer deaths worldwide and several molecular signatures have been developed to predict survival in lung cancer. Increasing evidence suggests that proliferation and migration to promote tumor growth are associated with dysregulated ion channel expression. In this study, by analyzing high-throughput gene expression data, we identify the differentially expressed K+ channel genes in lung cancer. In total, we prioritize ten dysregulated K+ channel genes (5 up-regulated and 5 down-regulated genes, which were designated as K-10) in lung tumor tissue compared with normal tissue. A risk scoring system combined with the K-10 signature accurately predicts clinical outcome in lung cancer, which is independent of standard clinical and pathological prognostic factors including patient age, lymph node involvement, tumor size, and tumor grade. We further indicate that the K-10 potentially predicts clinical outcome in breast and colon cancers. Molecular signature discovered through K+ gene expression profiling may serve as a novel biomarker to assess the risk in lung cancer.

16.
Korean J Physiol Pharmacol ; 23(2): 151-159, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30820159

RESUMEN

Pruritus (itching) is classically defined as an unpleasant cutaneous sensation that leads to scratching behavior. Although the scientific criteria of classification for pruritic diseases are not clear, it can be divided as acute or chronic by duration of symptoms. In this study, we investigated whether skin injury caused by chemical (contact hypersensitivity, CHS) or physical (skin-scratching stimulation, SSS) stimuli causes initial pruritus and analyzed gene expression profiles systemically to determine how changes in skin gene expression in the affected area are related to itching. In both CHS and SSS, we ranked the Gene Ontology Biological Process terms that are generally associated with changes. The factors associated with upregulation were keratinization, inflammatory response and neutrophil chemotaxis. The Kyoto Encyclopedia of Genes and Genomes pathway shows the difference of immune system, cell growth and death, signaling molecules and interactions, and signal transduction pathways. Il1a , Il1b and Il22 were upregulated in the CHS, and Tnf, Tnfrsf1b, Il1b, Il1r1 and Il6 were upregulated in the SSS. Trpc1 channel genes were observed in representative itching-related candidate genes. By comparing and analyzing RNA-sequencing data obtained from the skin tissue of each animal model in these characteristic stages, it is possible to find useful diagnostic markers for the treatment of itching, to diagnose itching causes and to apply customized treatment.

17.
Genomics Proteomics Bioinformatics ; 16(2): 144-151, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29730207

RESUMEN

High-throughput RNA-seq has revolutionized the process of small RNA (sRNA) discovery, leading to a rapid expansion of sRNA categories. In addition to the previously well-characterized sRNAs such as microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and small nucleolar RNA (snoRNAs), recent emerging studies have spotlighted on tRNA-derived sRNAs (tsRNAs) and rRNA-derived sRNAs (rsRNAs) as new categories of sRNAs that bear versatile functions. Since existing software and pipelines for sRNA annotation are mostly focused on analyzing miRNAs or piRNAs, here we developed the sRNA annotation pipelineoptimized for rRNA- and tRNA-derived sRNAs (SPORTS1.0). SPORTS1.0 is optimized for analyzing tsRNAs and rsRNAs from sRNA-seq data, in addition to its capacity to annotate canonical sRNAs such as miRNAs and piRNAs. Moreover, SPORTS1.0 can predict potential RNA modification sites based on nucleotide mismatches within sRNAs. SPORTS1.0 is precompiled to annotate sRNAs for a wide range of 68 species across bacteria, yeast, plant, and animal kingdoms, while additional species for analyses could be readily expanded upon end users' input. For demonstration, by analyzing sRNA datasets using SPORTS1.0, we reveal that distinct signatures are present in tsRNAs and rsRNAs from different mouse cell types. We also find that compared to other sRNA species, tsRNAs bear the highest mismatch rate, which is consistent with their highly modified nature. SPORTS1.0 is an open-source software and can be publically accessed at https://github.com/junchaoshi/sports1.0.


Asunto(s)
ARN Ribosómico/química , ARN Pequeño no Traducido/química , ARN de Transferencia/química , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Animales , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , MicroARNs/química , MicroARNs/metabolismo , Anotación de Secuencia Molecular , ARN Ribosómico/metabolismo , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , ARN Pequeño no Traducido/metabolismo , ARN de Transferencia/metabolismo
18.
Biomicrofluidics ; 12(1): 014111, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29464009

RESUMEN

Self-monitoring of glycated albumin (GA), a useful glycemic marker, is an established method for preventing diabetes complications. Here, the paper-based lateral flow assay devices were developed for the sensitive detection of GA and the total human serum albumin (tHSA) in self-monitoring diabetes patients. Boronic acid-derived agarose beads were packed into a hole on a lateral flow channel. These well-coordinated agarose beads were used to capture GA through specific cis-diol interactions and to enhance the colorimetric signals by concentrating the target molecules. The devices exhibited large dynamic ranges (from 10 µg/ml to 10 mg/ml for GA and from 10 mg/ml to 50 mg/ml for tHSA) and low detection limits (7.1 µg/ml for GA and 4.7 mg/ml for tHSA), which cover the range of GA concentration in healthy plasma, which is 0.21-1.65 mg/ml (0.6%-3%). In determining the unknown GA concentrations in two commercial human plasma samples, the relative percentage difference between the values found by a standard ELISA kit and those found by our developed devices was 2.62% and 8.80%, which are within an acceptable range. The measurements of GA and tHSA were completed within 20 min for the total sample-to-answer diagnosis, fulfilling the demand for rapid analysis. Furthermore, the recovery values ranged from 99.4% to 110% in device accuracy tests. These results indicate that the developed paper-based device with boronic acid-derived agarose beads is a promising platform for GA and tHSA detection as applied to self-monitoring systems.

19.
EBioMedicine ; 27: 18-26, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29248507

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are a class of novel RNAs with important biological functions, and aberrant expression of circRNAs has been implicated in human diseases. However, the feasibility of using blood circRNAs as disease biomarkers is largely unknown. METHODS: We explored the potential of using human peripheral blood mononuclear cell (PBMC) circRNAs as marker molecules to diagnose active pulmonary tuberculosis (TB). FINDINGS: First, we demonstrated that circRNAs are widely expressed in human PBMCs and that many are abundant enough to be detected. Second, we found that the magnitude of PBMC circRNAs in TB patients was higher than that in the paired healthy controls. Compared with host linear transcripts, the circRNAs within several pathways are disproportionately upregulated in active TB patients, including "Cytokine-cytokine receptor interaction", "Chemokine signaling pathway", "Neurotrophin signaling pathway", and "Bacterial invasion of epithelial cells". Based on the differentially expressed circRNAs within these pathways, we developed a PBMC circRNA-based molecular signature differentiating active TB patients from healthy controls. We validated the classification power of the PBMC circRNA signature in an independent cohort with the area under the receiver operating characteristic curve (AUC) at 0.946. INTERPRETATION: Our results suggest that PBMC circRNAs are potentially reliable marker molecules in TB diagnosis.


Asunto(s)
Regulación de la Expresión Génica , ARN/sangre , ARN/genética , Tuberculosis Pulmonar/sangre , Tuberculosis Pulmonar/diagnóstico , Femenino , Perfilación de la Expresión Génica , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Circular , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Tuberculosis Pulmonar/genética
20.
Oncoimmunology ; 6(11): e1360457, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29147625

RESUMEN

To date, the exact impact of mast cells in tumor microenvironment is still controversial because of inconsistency in observations regarding the relationship between mast cell infiltrates and cancer development and prognosis. The discrepancies in previous studies have motivated us to examine the roles of mast cells in cancer pathology from different perspectives. Here, we investigated the impact of mast cells on transcriptomic profiles in the tissue microenvironment. Mice carrying the W-sh mutation in c-kit (KitW-sh ) are deficient in mast cell production and were used to assess the influence of mast cells on gene expression. By examining the transcriptomic profile among wild-type mice, KitW-sh mice, and KitW-sh mice with mast cell engraftment, we identified a list of "mast cell-dependent genes," which are enriched for cancer-related pathways. Utilizing whole-genome gene expression data from both mouse models and human cancer patients, we demonstrated that the expression profile of the mast cell-dependent genes differs between tumor and normal tissues from lung, breast, and colon, respectively. Mast cell infiltration is potentially increased in tumors compared with normal tissues, suggesting that mast cells might participate in tumor development. Accordingly, a prognostic molecular signature was developed based on the mast cell-dependent genes, which predicted recurrence-free survival for human patients with lung, breast, and colon cancers, respectively. Our study provides a novel transcriptomic insight into the impact of mast cells in the tumor microenvironment, though further experimental investigation is needed to validate the exact role of individual mast cell-dependent genes in different cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...