Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Eur Radiol ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311916

RESUMEN

OBJECTIVE: Distinguishing post-COVID-19 residual abnormalities from interstitial lung abnormalities (ILA) on CT can be challenging if clinical information is limited. This study aimed to evaluate the diagnostic performance of radiologists in distinguishing post-COVID-19 residual abnormalities from ILA. METHODS: This multi-reader, multi-case study included 60 age- and sex-matched subjects with chest CT scans. There were 40 cases of ILA (20 fibrotic and 20 non-fibrotic) and 20 cases of post-COVID-19 residual abnormalities. Fifteen radiologists from multiple nations with varying levels of experience independently rated suspicion scores on a 5-point scale to distinguish post-COVID-19 residual abnormalities from fibrotic ILA or non-fibrotic ILA. Interobserver agreement was assessed using the weighted κ value, and the scores of individual readers were compared with the consensus of all readers. Receiver operating characteristic curve analysis was conducted to evaluate the diagnostic performance of suspicion scores for distinguishing post-COVID-19 residual abnormalities from ILA and for differentiating post-COVID-19 residual abnormalities from both fibrotic and non-fibrotic ILA. RESULTS: Radiologists' diagnostic performance for distinguishing post-COVID-19 residual abnormalities from ILA was good (area under the receiver operating characteristic curve (AUC) range, 0.67-0.92; median AUC, 0.85) with moderate agreement (κ = 0.56). The diagnostic performance for distinguishing post-COVID-19 residual abnormalities from non-fibrotic ILA was lower than that from fibrotic ILA (median AUC = 0.89 vs. AUC = 0.80, p = 0.003). CONCLUSION: Radiologists demonstrated good diagnostic performance and moderate agreement in distinguishing post-COVID-19 residual abnormalities from ILA, but careful attention is needed to avoid misdiagnosing them as non-fibrotic ILA. KEY POINTS: Question How good are radiologists at differentiating interstitial lung abnormalities (ILA) from changes related to COVID-19 infection? Findings Radiologists had a median AUC of 0.85 in distinguishing post-COVID-19 abnormalities from ILA with moderate agreement (κ = 0.56). Clinical relevance Radiologists showed good diagnostic performance and moderate agreement in distinguishing post-COVID-19 residual abnormalities from ILA; nonetheless, caution is needed in distinguishing residual abnormalities from non-fibrotic ILA.

2.
Clin Imaging ; 114: 110252, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39137471

RESUMEN

PURPOSE: To determine the performance of volumetric dual energy low kV and iodine radiomic features for the differentiation of intrathoracic lymph node histopathology, and influence of contrast protocol. MATERIALS AND METHODS: Intrathoracic lymph nodes with histopathologic correlation (neoplastic, granulomatous sarcoid, benign) within 90 days of DECT chest imaging were volumetrically segmented. 1691 volumetric radiomic features were extracted from iodine maps and low-kV images, totaling 3382 features. Univariate analysis was performed using 2-sample t-test and filtered for false discoveries. Multivariable analysis was used to compute AUCs for lymph node classification tasks. RESULTS: 129 lymph nodes from 72 individuals (mean age 61 ± 15 years) were included, 52 neoplastic, 51 benign, and 26 granulomatous-sarcoid. Among all contrast enhanced DECT protocol exams (routine, PE and CTA), univariable analysis demonstrated no significant differences in iodine and low kV features between neoplastic and non-neoplastic lymph nodes; in the subset of neoplastic versus benign lymph nodes with routine DECT protocol, 199 features differed (p = .01- < 0.05). Multivariable analysis using both iodine and low kV features yielded AUCs >0.8 for differentiating neoplastic from non-neoplastic lymph nodes (AUC 0.86), including subsets of neoplastic from granulomatous (AUC 0.86) and neoplastic from benign (AUC 0.9) lymph nodes, among all contrast protocols. CONCLUSIONS: Volumetric DECT radiomic features demonstrate strong collective performance in differentiation of neoplastic from non-neoplastic intrathoracic lymph nodes, and are influenced by contrast protocol.


Asunto(s)
Ganglios Linfáticos , Tomografía Computarizada por Rayos X , Humanos , Persona de Mediana Edad , Masculino , Femenino , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Tomografía Computarizada por Rayos X/métodos , Diagnóstico Diferencial , Imagen Radiográfica por Emisión de Doble Fotón/métodos , Estudios Retrospectivos , Medios de Contraste , Anciano , Radiografía Torácica/métodos , Radiómica
3.
Chest ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909953

RESUMEN

TOPIC IMPORTANCE: Chest CT imaging holds a major role in the diagnosis of lung diseases, many of which affect the peribronchovascular region. Identification and categorization of peribronchovascular abnormalities on CT imaging can assist in formulating a differential diagnosis and directing further diagnostic evaluation. REVIEW FINDINGS: The peribronchovascular region of the lung encompasses the pulmonary arteries, airways, and lung interstitium. Understanding disease processes associated with structures of the peribronchovascular region and their appearances on CT imaging aids in prompt diagnosis. This article reviews current knowledge in anatomic and pathologic features of the lung interstitium composed of intercommunicating prelymphatic spaces, lymphatics, collagen bundles, lymph nodes, and bronchial arteries; diffuse lung diseases that present in a peribronchovascular distribution; and an approach to classifying diseases according to patterns of imaging presentations. Lung peribronchovascular diseases can appear on CT imaging as diffuse thickening, fibrosis, masses or masslike consolidation, ground-glass or air space consolidation, and cysts, acknowledging some disease may have multiple presentations. SUMMARY: A category approach to peribronchovascular diseases on CT imaging can be integrated with clinical features as part of a multidisciplinary approach for disease diagnosis.

4.
Clin Chest Med ; 45(2): 213-235, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38816084

RESUMEN

Imaging plays a major role in the care of the intensive care unit (ICU) patients. An understanding of the monitoring devices is essential for the interpretation of imaging studies. An awareness of their expected locations aids in identifying complications in a timely manner. This review describes the imaging of ICU monitoring and support catheters, tubes, and pulmonary and cardiac devices, some more commonly encountered and others that have been introduced into clinical patient care more recently. Special focus will be placed on chest radiography and potential pitfalls encountered.


Asunto(s)
Unidades de Cuidados Intensivos , Radiografía Torácica , Humanos , Cuidados Críticos/métodos , Tomografía Computarizada por Rayos X
5.
J Thorac Imaging ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38798201

RESUMEN

PURPOSE: Apical pleuroparenchymal scarring (APPS) is commonly seen on chest computed tomography (CT), though the imaging and clinical features, to the best of our knowledge, have never been studied. The purpose was to understand APPS's typical morphologic appearance and associated clinical features. PATIENTS AND METHODS: A random generator selected 1000 adult patients from all 21516 chest CTs performed at urban outpatient centers from January 1, 2016 to December 31, 2016. Patients with obscuring apical diseases were excluded to eliminate confounding factors. After exclusions, 780 patients (median age: 64 y; interquartile range: 56 to 72 y; 55% males) were included for analysis. Two radiologists evaluated the lung apices of each CT for the extent of abnormality in the axial plane (mild: <5 mm, moderate: 5 to 10 mm, severe: >10 mm), craniocaudal plane (extension halfway to the aortic arch, more than halfway, vs below the arch), the predominant pattern (nodular vs reticular and symmetry), and progression. Cohen kappa coefficient was used to assess radiologists' agreement in scoring. Ordinal logistic regression was used to determine associations of clinical and imaging variables with APPS. RESULTS: APPS was present on 65% (507/780) of chest CTs (54% mild axial; 80% mild craniocaudal). The predominant pattern was nodular and symmetric. Greater age, female sex, lower body mass index, greater height, and white race were associated with more extensive APPS. APPS was not found to be associated with lung cancer in this cohort. CONCLUSION: Classifying APPS by the extent of disease in the axial or craniocaudal planes, in addition to the predominant pattern, enabled statistically significant associations to be determined, which may aid in understanding the pathophysiology of apical scarring and potential associated risks.

7.
Clin Chest Med ; 45(2): 339-356, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38816092

RESUMEN

Radiation therapy is part of a multimodality treatment approach to lung cancer. The radiologist must be aware of both the expected and the unexpected imaging findings of the post-radiation therapy patient, including the time course for development of post- radiation therapy pneumonitis and fibrosis. In this review, a brief discussion of radiation therapy techniques and indications is presented, followed by an image-heavy differential diagnostic approach. The review focuses on computed tomography imaging examples to help distinguish normal postradiation pneumonitis and fibrosis from alternative complications, such as infection, local recurrence, or radiation-induced malignancy.


Asunto(s)
Neoplasias Pulmonares , Tomografía Computarizada por Rayos X , Humanos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/diagnóstico por imagen , Neumonitis por Radiación/etiología , Neumonitis por Radiación/diagnóstico por imagen , Diagnóstico Diferencial
8.
Radiology ; 310(3): e231986, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38501953

RESUMEN

Photon-counting CT (PCCT) is an emerging advanced CT technology that differs from conventional CT in its ability to directly convert incident x-ray photon energies into electrical signals. The detector design also permits substantial improvements in spatial resolution and radiation dose efficiency and allows for concurrent high-pitch and high-temporal-resolution multienergy imaging. This review summarizes (a) key differences in PCCT image acquisition and image reconstruction compared with conventional CT; (b) early evidence for the clinical benefit of PCCT for high-spatial-resolution diagnostic tasks in thoracic imaging, such as assessment of airway and parenchymal diseases, as well as benefits of high-pitch and multienergy scanning; (c) anticipated radiation dose reduction, depending on the diagnostic task, and increased utility for routine low-dose thoracic CT imaging; (d) adaptations for thoracic imaging in children; (e) potential for further quantitation of thoracic diseases; and (f) limitations and trade-offs. Moreover, important points for conducting and interpreting clinical studies examining the benefit of PCCT relative to conventional CT and integration of PCCT systems into multivendor, multispecialty radiology practices are discussed.


Asunto(s)
Radiología , Tomografía Computarizada por Rayos X , Niño , Humanos , Procesamiento de Imagen Asistido por Computador , Fotones
9.
J Am Coll Radiol ; 20(11S): S455-S470, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-38040464

RESUMEN

Incidental pulmonary nodules are common. Although the majority are benign, most are indeterminate for malignancy when first encountered making their management challenging. CT remains the primary imaging modality to first characterize and follow-up incidental lung nodules. This document reviews available literature on various imaging modalities and summarizes management of indeterminate pulmonary nodules detected incidentally. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.


Asunto(s)
Nódulos Pulmonares Múltiples , Sociedades Médicas , Humanos , Diagnóstico por Imagen/métodos , Medicina Basada en la Evidencia , Pulmón , Nódulos Pulmonares Múltiples/diagnóstico por imagen , Estados Unidos
10.
J Thorac Imaging ; 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37732714

RESUMEN

PURPOSE: The purpose of this study was to identify differences in imaging features between patients with confirmed right middle lobe (RML) torsion compared to those suspected yet without torsion. MATERIALS AND METHODS: This retrospective study entailing a search of radiology reports from April 1, 2014, to April 15, 2021, resulted in 52 patients with suspected yet without lobar torsion and 4 with confirmed torsion, supplemented by 2 additional cases before the search period for a total of 6 confirmed cases. Four thoracic radiologists (1 an adjudicator) evaluated chest radiographs and computed tomography (CT) examinations, and Fisher exact and Mann-Whitney tests were used to identify any significant differences in imaging features (P<0.05). RESULTS: A reversed halo sign was more frequent for all readers (P=0.001) in confirmed RML torsion than patients without torsion (83.3% vs. 0% for 3 readers, one the adjudicator). The CT coronal bronchial angle between RML bronchus and bronchus intermedius was larger (P=0.035) in torsion (121.28 degrees) than nontorsion cases (98.26 degrees). Patients with torsion had a higher percentage of ground-glass opacity in the affected lobe (P=0.031). A convex fissure towards the adjacent lobe on CT (P=0.009) and increased lobe volume on CT (P=0.001) occurred more often in confirmed torsion. CONCLUSION: A reversed halo sign, larger CT coronal bronchial angle, greater proportion of ground-glass opacity, fissural convexity, and larger lobe volume on CT may aid in early recognition of the rare yet highly significant diagnosis of lobar torsion.

11.
J Comput Assist Tomogr ; 47(2): 212-219, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36790870

RESUMEN

PURPOSE: To assess deep learning denoised (DLD) computed tomography (CT) chest images at various low doses by both quantitative and qualitative perceptual image analysis. METHODS: Simulated noise was inserted into sinogram data from 32 chest CTs acquired at 100 mAs, generating anatomically registered images at 40, 20, 10, and 5 mAs. A DLD model was developed, with 23 scans selected for training, 5 for validation, and 4 for test.Quantitative analysis of perceptual image quality was assessed with Structural SIMilarity Index (SSIM) and Fréchet Inception Distance (FID). Four thoracic radiologists graded overall diagnostic image quality, image artifact, visibility of small structures, and lesion conspicuity. Noise-simulated and denoised image series were evaluated in comparison with one another, and in comparison with standard 100 mAs acquisition at the 4 mAs levels. Statistical tests were conducted at the 2-sided 5% significance level, with multiple comparison correction. RESULTS: At the same mAs levels, SSIM and FID between noise-simulated and reconstructed DLD images indicated that images were closer to a perfect match with increasing mAs (closer to 1 for SSIM, and 0 for FID).In comparing noise-simulated and DLD images to standard-dose 100-mAs images, DLD improved SSIM and FID. Deep learning denoising improved SSIM of 40-, 20-, 10-, and 5-mAs simulations in comparison with standard-dose 100-mAs images, with change in SSIM from 0.91 to 0.94, 0.87 to 0.93, 0.67 to 0.87, and 0.54 to 0.84, respectively. Deep learning denoising improved FID of 40-, 20-, 10-, and 5-mAs simulations in comparison with standard-dose 100-mAs images, with change in FID from 20 to 13, 46 to 21, 104 to 41, and 148 to 69, respectively.Qualitative image analysis showed no significant difference in lesion conspicuity between DLD images at any mAs in comparison with 100-mAs images. Deep learning denoising images at 10 and 5 mAs were rated lower for overall diagnostic image quality ( P < 0.001), and at 5 mAs lower for overall image artifact and visibility of small structures ( P = 0.002), in comparison with 100 mAs. CONCLUSIONS: Deep learning denoising resulted in quantitative improvements in image quality. Qualitative assessment demonstrated DLD images at or less than 10 mAs to be rated inferior to standard-dose images.


Asunto(s)
Aprendizaje Profundo , Humanos , Dosis de Radiación , Tomografía Computarizada por Rayos X/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Algoritmos , Relación Señal-Ruido
12.
J Comput Assist Tomogr ; 47(1): 50-57, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36571247

RESUMEN

OBJECTIVE: This study aimed to determine the prevalence of axillary and subpectoral (SP) lymph nodes after ipsilateral COVID-19 vaccine administration on chest computed tomography (CT). METHODS: Subjects with chest CTs between 2 and 25 days after a first or second vaccine dose, December 15, 2020, to February 12, 2021, were included. Orthogonal measures of the largest axillary and SP nodes were recorded by 2 readers blinded to vaccine administration and clinical details. A mean nodal diameter discrepancy of ≥6 mm between contralateral stations was considered positive for asymmetry. Correlation with the side of vaccination, using a Spearman rank correlation, was performed on the full cohort and after excluding patients with diseases associated with adenopathy. RESULTS: Of the 138 subjects (81 women, 57 men; mean [SD] age, 74.4 ± 11.7 years), 48 (35%) had asymmetrically enlarged axillary and/or SP lymph nodes, 42 (30%) had ipsilateral, and 6 (4%) had contralateral to vaccination ( P = 0.003). Exclusion of 29 subjects with conditions associated with adenopathy showed almost identical correlation, with asymmetric nodes in 32 of 109 (29%) ipsilateral and in 5 of 109 (5%) contralateral to vaccination ( P = 0.002). CONCLUSIONS: Axillary and/or SP lymph nodes ipsilateral to vaccine administration represents a clinical conundrum. Asymmetric nodes were detected at CT in 30% of subjects overall and 29% of subjects without conditions associated with adenopathy, approximately double the prevalence rate reported to the Centers for Disease Control and Prevention by vaccine manufacturers. When interpreting examinations correlation with vaccine administration timing and site is important for pragmatic management.


Asunto(s)
COVID-19 , Linfadenopatía , Masculino , Humanos , Femenino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , SARS-CoV-2 , Vacunas contra la COVID-19 , Prevalencia , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/patología , Tomografía Computarizada por Rayos X , Linfadenopatía/diagnóstico por imagen , Linfadenopatía/epidemiología , Linfadenopatía/patología , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Vacunación
13.
Semin Roentgenol ; 57(4): 313-323, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36265983

RESUMEN

Pulmonary CTA is a commonly performed study and the radiologist's role is not limited to simply producing a report. The process from identifying the appropriate patients who will benefit from the study to improving performance in the radiology department requires the radiologist's involvement, expertise, and leadership. The focus of this narrative review is to highlight the different steps and the ways to improve the quality in the assessment of thromboembolic disease where the radiologists can have an impact. This article provides an update on the commonly used and more recently published clinical decision tools, specific parameter adjustments of pulmonary CTA for more challenging patients and potential improvement for the radiology department.


Asunto(s)
Embolia Pulmonar , Humanos , Embolia Pulmonar/diagnóstico por imagen , Radiólogos , Enfermedad Aguda
14.
Sci Rep ; 12(1): 11813, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35821374

RESUMEN

Quantitative radiomic and iodine imaging features have been explored for diagnosis and characterization of tumors. In this work, we invistigate combined whole-lesion radiomic and iodine analysis for the differentiation of pulmonary tumors on contrast-enhanced dual-energy CT (DECT) chest images. 100 biopsy-proven solid lung lesions on contrast-enhanced DECT chest exams within 3 months of histopathologic sampling were identified. Lesions were volumetrically segmented using open-source software. Lesion segmentations and iodine density volumes were loaded into a radiomics prototype for quantitative analysis. Univariate analysis was performed to determine differences in volumetric iodine concentration (mean, median, maximum, minimum, 10th percentile, 90th percentile) and first and higher order radiomic features (n = 1212) between pulmonary tumors. Analyses were performed using a 2-sample t test, and filtered for false discoveries using Benjamini-Hochberg method. 100 individuals (mean age 65 ± 13 years; 59 women) with 64 primary and 36 metastatic lung lesions were included. Only one iodine concentration parameter, absolute minimum iodine, significantly differed between primary and metastatic pulmonary tumors (FDR-adjusted p = 0.015, AUC 0.69). 310 (FDR-adjusted p = 0.0008 to p = 0.0491) radiomic features differed between primary and metastatic lung tumors. Of these, 21 features achieved AUC ≥ 0.75. In subset analyses of lesions imaged by non-CTPA protocol (n = 72), 191 features significantly differed between primary and metastatic tumors, 19 of which achieved AUC ≥ 0.75. In subset analysis of tumors without history of prior treatment (n = 59), 40 features significantly differed between primary and metastatic tumors, 11 of which achieved AUC ≥ 0.75. Volumetric radiomic analysis provides differentiating capability beyond iodine quantification. While a high number of radiomic features differentiated primary versus metastatic pulmonary tumors, fewer features demonstrated good individual discriminatory utility.


Asunto(s)
Yodo , Neoplasias Pulmonares , Anciano , Biopsia , Femenino , Humanos , Pulmón/patología , Neoplasias Pulmonares/patología , Persona de Mediana Edad , Tomografía Computarizada por Rayos X/métodos
15.
Semin Ultrasound CT MR ; 43(3): 204-220, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35688532

RESUMEN

Imaging of the thoracic aorta is a common request in both the acute and outpatient settings, playing a crucial role in diagnosis and treatment planning of aortic disease. The findings of aortic pathology may be obvious or occult on imaging. Recognizing subtle changes is essential and may lead to early detection and prevention of serious morbidity and mortality. Knowledge of the anatomy and understanding the pathophysiology of aortic disease, as well as selecting the appropriate imaging modality and protocol will enable prompt diagnosis and early intervention of aortic pathology. Currently, computed tomography angiography and magnetic resonance angiography of the aorta are the most commonly used imaging modalities to evaluate the aorta. This review focuses on a spectrum of aortic pathology manifestations on computed tomography and magnetic resonance, including atherosclerosis and acute aortic syndromes, highlighting diagnostic challenges and approaches to aid in image interpretation.


Asunto(s)
Enfermedades de la Aorta , Enfermedades Torácicas , Aorta/patología , Aorta Torácica/diagnóstico por imagen , Aorta Torácica/patología , Enfermedades de la Aorta/diagnóstico por imagen , Enfermedades de la Aorta/patología , Humanos , Angiografía por Resonancia Magnética , Tomografía Computarizada por Rayos X
16.
Semin Ultrasound CT MR ; 43(3): 230-245, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35688534

RESUMEN

Lung nodules are frequently encountered while interpreting chest CTs and are challenging to detect, characterize, and manage given they can represent both benign or malignant etiologies. An understanding of features associated with malignancy and causes of interpretive pitfalls is helpful to avoid misdiagnoses. This review addresses pertinent topics related to the etiologies for missed lung nodules on radiography and CT. Additionally, CT imaging technical pitfalls and challenges in addition to issues in the evaluation of nodule morphology, attenuation, and size will be discussed. Nodule management guidelines will be addressed as well as recent investigations that further our understanding of lung nodules.


Asunto(s)
Neoplasias Pulmonares , Nódulo Pulmonar Solitario , Humanos , Neoplasias Pulmonares/patología , Radiografía , Nódulo Pulmonar Solitario/diagnóstico por imagen , Tomografía Computarizada por Rayos X
17.
Clin Imaging ; 88: 24-32, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35569280

RESUMEN

Acute pulmonary embolism (PE) is a critical, potentially life-threatening finding on contrast-enhanced cross-sectional chest imaging. Timely and accurate diagnosis of thrombus acuity and extent directly influences patient management, and outcomes. Technical and interpretive pitfalls may present challenges to the radiologist, and by extension, pose nuance in the development and integration of artificial intelligence support tools. This review delineates imaging considerations for diagnosis of acute PE, and rationale, hurdles and applications of artificial intelligence for the PE task.


Asunto(s)
Inteligencia Artificial , Embolia Pulmonar , Enfermedad Aguda , Estudios Transversales , Diagnóstico por Imagen , Humanos , Embolia Pulmonar/diagnóstico por imagen
18.
Am J Clin Pathol ; 157(6): 908-926, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34999755

RESUMEN

OBJECTIVES: Patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may develop end-stage lung disease requiring lung transplantation. We report the clinical course, pulmonary pathology with radiographic correlation, and outcomes after lung transplantation in three patients who developed chronic respiratory failure due to postacute sequelae of SARS-CoV-2 infection. METHODS: A retrospective histologic evaluation of explanted lungs due to coronavirus disease 2019 was performed. RESULTS: None of the patients had known prior pulmonary disease. The major pathologic findings in the lung explants were proliferative and fibrotic phases of diffuse alveolar damage, interstitial capillary neoangiogenesis, and mononuclear inflammation, specifically macrophages, with varying numbers of T and B lymphocytes. The fibrosis varied from early collagen deposition to more pronounced interstitial collagen deposition; however, pulmonary remodeling with honeycomb change was not present. Other findings included peribronchiolar metaplasia, microvascular thrombosis, recanalized thrombi in muscular arteries, and pleural adhesions. No patients had either recurrence of SARS-CoV-2 infection or allograft rejection following transplant at this time. CONCLUSIONS: The major pathologic findings in the lung explants of patients with SARS-CoV-2 infection suggest ongoing fibrosis, prominent macrophage infiltration, neoangiogenesis, and microvascular thrombosis. Characterization of pathologic findings could help develop novel management strategies.


Asunto(s)
COVID-19 , Trasplante de Pulmón , Trombosis , COVID-19/complicaciones , Fibrosis , Humanos , Pulmón/patología , Trasplante de Pulmón/efectos adversos , Estudios Retrospectivos , SARS-CoV-2 , Trombosis/patología
19.
Acad Radiol ; 29 Suppl 2: S98-S107, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33610452

RESUMEN

OBJECTIVE: To evaluate the inter-observer consistency for subsolid pulmonary nodule radiomic features. MATERIALS AND METHODS: Subsolid nodules were selected by reviewing radiology reports of CT examinations performed December 1, 2015 to April 1, 2016. Patients with CTs at two time points were included in this study. There were 55 patients with subsolid nodules, of whom 14 had two nodules. Of 69 subsolid nodules, 66 were persistent at the second time point, yielding 135 lesions for segmentation. Two thoracic radiologists and an imaging fellow segmented the lesions using a semi-automated volumetry algorithm (Syngo.via Vb20, Siemens). Coefficient of variation (CV) was used to assess consistency of 91 quantitative measures extracted from the subsolid nodule segmentations, including first and higher order texture features. The accuracy of segmentation was visually graded by an experienced thoracic radiologist. Influencing factors on radiomic feature consistency and segmentation accuracy were assessed using generalized estimating equation analyses and the Exact Mann-Whitney test. RESULTS: Mean patient age was 71 (38-93 years), with 39 women and 16 men. Mean nodule volume was 1.39mL, range .03-48.2mL, for 135 nodules. Several radiomic features showed high inter-reader consistency (CV<5%), including entropy, uniformity, sphericity, and spherical disproportion. Descriptors such as surface area and energy had low consistency across inter-reader segmentations (CV>10%). Nodule percent solid component and attenuation influenced inter-reader variability of some radiomic features. The presence of contrast did not significantly affect the consistency of subsolid nodule radiomic features. Near perfect segmentation, within 5% of actual nodule size, was achieved in 68% of segmentations, and very good segmentation, within 25% of actual nodule size, in 94%. Morphologic features including nodule margin and shape (each p <0.01), and presence of air bronchograms (p = 0.004), bubble lucencies (p = 0.02) and broad pleural contact (p < 0.01) significantly affected the probability of near perfect segmentation. Stroke angle (p = 0.001) and length (p < 0.001) also significantly influenced probability of near perfect segmentation. CONCLUSIONS: The inter-observer consistency of radiomic features for subsolid pulmonary nodules varies, with high consistency for several features, including sphericity, spherical disproportion, and first and higher order entropy, and normalized non-uniformity. Nodule morphology influences the consistency of subsolid nodule radiomic features, and the accuracy of subsolid nodule segmentation.


Asunto(s)
Neoplasias Pulmonares , Nódulo Pulmonar Solitario , Anciano , Anciano de 80 o más Años , Algoritmos , Femenino , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Masculino , Radiólogos , Nódulo Pulmonar Solitario/diagnóstico por imagen , Nódulo Pulmonar Solitario/patología , Tomografía Computarizada por Rayos X/métodos
20.
Semin Ultrasound CT MR ; 42(6): 563-573, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34895612

RESUMEN

A variety of surgical procedures are utilized to treat a spectrum of cardiopulmonary diseases. In the imaging of patients in the post-operative period, it is important to have an understanding of surgical techniques including invasive and minimally invasive procedures and the expected postsurgical findings. Knowledge of certain patient risk factors, various complications associated with specific surgical procedures, and a keen attention to detail are essential to avoid misinterpretation and delay diagnosis. Prompt detection of potential complications allows timely intervention, thereby, optimizing patient outcomes in the post-operative period.


Asunto(s)
Diagnóstico por Imagen , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...