Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 13(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34771200

RESUMEN

Endothelialization by materials provides a promising approach for the rapid re-endothelialization of a cardiovascular implantation. Although previous studies have focused on improving endothelialization through the immobilization of bioactive molecules onto the surface of biodegradable implants, comparative studies of effective surface modification have not yet been reported. Here, we conducted a comparative study on the surface modification of poly(lactide-co-glycolide) (PLGA)-based composites to graft mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) using three different materials, fibronectin (FN), polyethylenimine (PEI), and polydopamine (PDA), which have different bond strengths of ligand-receptor interaction, ionic bond, and covalent bond, respectively. Further in vitro analysis exhibited that MSC-EVs released from all modified films sustainably, but the MSC-EVs grafted onto the surface coated with PEI are more effective than other groups in increasing angiogenesis and reducing the inflammatory responses in endothelial cells. Therefore, the overall results demonstrated that PEI is a desirable coating reagent for the immobilization of MSC-EVs on the surface of biodegradable implants.

2.
J Tissue Eng ; 12: 20417314211008626, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33959246

RESUMEN

Exosomes derived from mesenchymal stem cells (MSCs) have been studied as vital components of regenerative medicine. Typically, various isolation methods of exosomes from cell culture medium have been developed to increase the isolation yield of exosomes. Moreover, the exosome-depletion process of serum has been considered to result in clinically active and highly purified exosomes from the cell culture medium. Our aim was to compare isolation methods, ultracentrifuge (UC)-based conventional method, and tangential flow filtration (TFF) system-based method for separation with high yield, and the bioactivity of the exosome according to the purity of MSC-derived exosome was determined by the ratio of Fetal bovine serum (FBS)-derived exosome to MSC-derived exosome depending on exosome depletion processes of FBS. The TFF-based isolation yield of exosome derived from human umbilical cord MSC (UCMSC) increased two orders (92.5 times) compared to UC-based isolation method. Moreover, by optimizing the process of depleting FBS-derived exosome, the purity of UCMSC-derived exosome, evaluated using the expression level of MSC exosome surface marker (CD73), was about 15.6 times enhanced and the concentration of low-density lipoprotein-cholesterol (LDL-c), known as impurities resulting from FBS, proved to be negligibly detected. The wound healing and angiogenic effects of highly purified UCMSC-derived exosomes were improved about 23.1% and 71.4%, respectively, with human coronary artery endothelial cells (HCAEC). It suggests that the defined MSC exosome with high yield and purity could increase regenerative activity.

3.
Tissue Eng Regen Med ; 18(4): 613-622, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33877618

RESUMEN

BACKGROUND: Poly(lactic-co-glycolic acid) (PLGA) microspheres have been actively used in various pharmaceutical formulations because they can sustain active pharmaceutical ingredient release and are easy to administer into the body using a syringe. However, the acidic byproducts produced by the decomposition of PLGA cause inflammatory reactions in surrounding tissues, limiting biocompatibility. Magnesium hydroxide (MH), an alkaline ceramic, has attracted attention as a potential additive because it has an acid-neutralizing effect. METHODS: To improve the encapsulation efficiency of hydrophilic MH, the MH particles were capped with hydrophobic ricinoleic acid (RA-MH). PLGA microspheres encapsulated with RA-MH particles were manufactured by the O/W method. To assess the in vitro cytotoxicity of the degradation products of PLGA, MH/PLGA, and RA-MH/PLGA microspheres, CCK-8 and Live/Dead assays were performed with NIH-3T3 cells treated with different concentrations of their degradation products. In vitro anti-inflammatory effect of RA-MH/PLGA microspheres was evaluated with quantitative measurement of pro-inflammatory cytokines. RESULTS: The synthesized RA-MH was encapsulated in PLGA microspheres and displayed more than four times higher loading content than pristine MH. The PLGA microspheres encapsulated with RA-MH had an acid-neutralizing effect better than that of the control group. In an in vitro cell experiment, the degradation products obtained from RA-MH/PLGA microspheres exhibited higher biocompatibility than the degradation products obtained from PLGA microspheres. Additionally, the RA-MH/PLGA microsphere group showed an excellent anti-inflammatory effect. CONCLUSION: Our results proved that RA-MH-encapsulated PLGA microspheres showed excellent biocompatibility with an anti-inflammatory effect. This technology can be applied to drug delivery and tissue engineering to treat various incurable diseases in the future.


Asunto(s)
Hidróxido de Magnesio , Ácido Poliglicólico , Animales , Antiinflamatorios , Ácido Láctico , Ratones , Microesferas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
4.
ACS Nano ; 15(4): 7575-7585, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33724774

RESUMEN

Kidney tissue engineering and regeneration approaches offer great potential for chronic kidney disease treatment, but kidney tissue complexity imposes an additional challenge in applying regenerative medicine for renal tissue regeneration. In this study, a porous pneumatic microextrusion (PME) composite scaffold consisting of poly(lactic-co-glycolic acid) (PLGA, P), magnesium hydroxide (MH, M), and decellularized porcine kidney extracellular matrix (kECM, E) is functionalized with bioactive compounds, polydeoxyribonucleotide (PDRN), and tumour necrosis factor-α (TNF-α)/interferon-γ (IFN-γ)-primed mesenchymal stem-cell-derived extracellular vesicles (TI-EVs) to improve the regeneration and maintenance of a functional kidney tissue. The combination of PDRN and TI-EVs showed a significant synergistic effect in regenerative processes including cellular proliferation, angiogenesis, fibrosis, and inflammation. In addition, the PME/PDRN/TI-EV scaffold induced an effective glomerular regeneration and restoration of kidney function compared to the existing PME scaffold in a partial nephrectomy mouse model. Therefore, such an integrated bioactive scaffold that combines biochemical cues from PDRN and TI-EVs and biophysical cues from a porous PLGA scaffold containing MH and kECM can be used as an advanced tissue engineering platform for kidney tissue regeneration.


Asunto(s)
Vesículas Extracelulares , Riñón , Animales , Ratones , Polidesoxirribonucleótidos , Regeneración , Porcinos , Ingeniería de Tejidos , Andamios del Tejido
5.
Biomater Sci ; 9(3): 892-907, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33245077

RESUMEN

Although drug-eluting stents (DESs) are mainly coated with biodegradable polymers such as PLGA and PLLA, their acidic degradation products can alter the local microenvironment and affect the homeostasis of adjacent tissue. Previously, we developed anti-inflammatory PLGA-based materials including magnesium hydroxide (MH) to relieve the side effects caused by PLGA degradation. However, the underlying molecular mechanism of its protective effects has not yet been clarified. Here, we demonstrated the pathological mechanism of vascular endothelial activation caused by PLGA by-products. The PLGA by-products accumulated in HCAECs through MCT1, followed by oxidative stress and the activation of the MAPK/NF-κB signaling pathway. Finally, the PLGA by-products increased the expression of VCAM-1 as well as the secretion of proinflammatory cytokines. However, the addition of MH particles significantly diminished the activation of this molecular pathway and the expression of inflammation-related factors induced by acidic PLGA degradation products. Furthermore, Mg2+ released from MH particles restored endothelial function in both intracellular and extracellular spaces. Taken together, MH particles prevent the accumulation of PLGA degradation products in HCAECs, thereby repressing the associated vascular endothelial activation. These findings on the biochemical mechanisms are expected to provide important clues for addressing the safety issues in nearly all biodegradable polymer-based implants.


Asunto(s)
Stents Liberadores de Fármacos , Hidróxido de Magnesio , Implantes Absorbibles , Endotelio Vascular , Polímeros
6.
Biomater Sci ; 8(7): 2018-2030, 2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32080689

RESUMEN

Poly(l-lactic acid) (PLLA) is a biocompatible and biodegradable polymer that has received much attention as a biomedical material. However, PLLA also produces by-products that acidify the surrounding tissues during in vivo degradation, which induces inflammatory responses. To overcome these problems, magnesium hydroxide nanoparticles (nano-magnesium hydroxide; nMH) were added to the PLLA matrix as a bioactive filler that can suppress inflammatory responses by neutralizing the acidified environment caused by the degradation of PLLA. Despite the advantages of nMH, the strong cohesion of these nanoparticles toward each other makes it difficult to manufacture a polymer matrix containing homogeneous nanoparticles through thermal processing. Here, we prepared two types of surface-modified nMH with oligolactide (ODLLA) utilizing grafting to (GT) and grafting from (GF) strategies to improve the mechanical and biological characteristics of the organic-inorganic hybrid composite. The incorporation of surface-modified nMH not only enhanced mechanical properties, such as Young's modulus, but also improved homogeneity of magnesium hydroxide particles in the PLLA matrix due to the increase in interfacial interaction. Additionally, the PLLA composites with surface-modified nMH exhibited reduced bulk erosion during hydrolytic degradation with lower cytotoxicity and immunogenicity. Hemocompatibility tests on the PLLA composites with nMH showed a higher albumin to fibrinogen ratio (AFR) and a lower influence of platelet activation, when compared with unmodified control samples. Taken all together, the surface-modified nMH could be seen to successfully improve the physical and biological characteristics of polymer composites. We believe this technology has great potential for the development of hybrid nanocomposites for biomedical devices, including cardiovascular implants.


Asunto(s)
Dioxanos/química , Hidróxido de Magnesio/farmacología , Poliésteres/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Módulo de Elasticidad , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Hidróxido de Magnesio/química , Ensayo de Materiales , Nanopartículas , Polímeros/química , Propiedades de Superficie
7.
Tissue Eng Regen Med ; 17(2): 155-163, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32026314

RESUMEN

BACKGROUND: Inflammation induces dysfunction of endothelial cells via inflammatory cell adhesion, and this phenomenon and reactive oxygen species accumulation are pivotal triggers for atherosclerosis-related vascular disease. Although exosomes are excellent candidate as an inhibitor in the inflammation pathway, it is necessary to develop exosome-mimetic nanovesicles (NVs) due to limitations of extremely low release rate and difficult isolation of natural exosomes. NVs are produced in much larger quantities than natural exosomes, but due to the low flexibility of the cell membranes, the high loss caused by hanging on the filter membranes during extrusion remains a challenge to overcome. Therefore, by making cell membranes more flexible, more efficient production of NVs can be expected. METHODS: To increase the flexibility of the cell membranes, the suspension of umbilical cord-mesenchymal stem cells (UC-MSCs) was subjected to 5 freeze and thaw cycles (FT) before serial extrusion. After serial extrusion through membranes with three different pore sizes, FT/NVs were isolated using a tangential flow filtration (TFF) system. NVs or FT/NVs were pretreated to the human coronary artery endothelial cells (HCAECs), and then inflammation was induced using tumor necrosis factor-α (TNF-α). RESULTS: With the freeze and thaw process, the production yield of exosome-mimetic nanovesicles (FT/NVs) was about 3 times higher than the conventional production method. The FT/NVs have similar biological properties as NVs for attenuating TNF-α induced inflammation. CONCLUSION: We proposed the efficient protocol for the production of NVs with UC-MSCs using the combination of freeze and thaw process with a TFF system. The FT/NVs successfully attenuated the TNF-α induced inflammation in HCAECs.


Asunto(s)
Biomimética , Células Endoteliales/metabolismo , Exosomas/metabolismo , Inflamación/metabolismo , Células Madre Mesenquimatosas/citología , Factor de Necrosis Tumoral alfa/metabolismo , Cordón Umbilical/citología , Aterosclerosis/metabolismo , Adhesión Celular , Citocinas , Humanos , Especies Reactivas de Oxígeno , Células THP-1
8.
Colloids Surf B Biointerfaces ; 181: 174-184, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31129523

RESUMEN

Drug-eluting stents (DESs) have been used for the treatment of cardiovascular diseases including stenosis. However, in-stent restenosis, thrombosis, and delayed re-endothelialization represent challenges for their clinical applications. Here, we demonstrate a novel work to overcome these limitations through surface modification technology. The cobalt-chromium (Co-Cr) surface was modified with antioxidants such as gallic acid (GA) and rutin (Ru) and the corresponding persulfates derivatives (i.e., GAS, and RuS) through a simple conjugation procedure. Various analyses tools such as ATR-FTIR, XPS, water contact angle, SEM, and AFM characterized the functionalized surface. The surface characterization confirmed that the antioxidant and the additional persulfates were successfully bonded to the Co-Cr surface. The results of in vitro endothelial cells proved that the persulfates derivatives showed the highest tendency to get rapid re-endothelialization especially RuS. In addition, it showed inhibition to smooth muscle cells (SMCs) as compared to control Co-Cr substrate. The persulfates modified substrates reduced the amount of adsorbed fibrinogen and albumin with higher stability to fetal bovine serum. Moreover, platelet study also demonstrated that Ru and RuS presented lower platelet adhesion with round shape morphology, whereas the control Co-Cr adhere and activate many platelets with pseudopodium morphology. Moreover, these modification processes did not cause any inflammatory responses. In conclusion, it is believed that the persulfates flavonoids have a great potential in the field of drug-eluting stents and blood contacting medical implants to improve blood compatibility, suppress SMCs, and get rapid re-endothelialization.


Asunto(s)
Prótesis Vascular , Células Endoteliales/citología , Flavonoides/química , Cromo/química , Cobalto/química , Tamaño de la Partícula , Propiedades de Superficie
9.
Int J Mol Sci ; 18(11)2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29112123

RESUMEN

Expansion of chondrocytes for repair of articular cartilage can lead to dedifferentiation, making it difficult to obtain a sufficient quantity of chondrocytes. Although previous studies have suggested that culture in a three-dimensional environment induces redifferentiation of dedifferentiated chondrocytes, its underlying mechanisms are still poorly understood in terms of metabolism compared with a two-dimensional environment. In this study, we demonstrate that attenuation of transglutaminase 2 (TG2), a multifunctional enzyme, stimulates redifferentiation of dedifferentiated chondrocytes. Fibroblast-like morphological changes increased as TG2 expression increased in passage-dependent manner. When dedifferentiated chondrocytes were cultured in a pellet culture system, TG2 expression was reduced and glycolytic enzyme expression up-regulated. Previous studies demonstrated that TG2 influences energy metabolism, and impaired glycolytic metabolism causes chondrocyte dedifferentiation. Interestingly, TG2 knockdown improved chondrogenic gene expression, glycolytic enzyme expression, and lactate production in a monolayer culture system. Taken together, down-regulation of TG2 is involved in redifferentiaton of dedifferentiated chondrocytes through enhancing glucose metabolism.


Asunto(s)
Diferenciación Celular/fisiología , Condrocitos/citología , Condrocitos/metabolismo , Condrogénesis/fisiología , Proteínas de Unión al GTP/metabolismo , Glucosa/metabolismo , Transglutaminasas/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Condrogénesis/genética , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Proteínas de Unión al GTP/genética , Humanos , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas/genética
10.
Int J Mol Sci ; 17(6)2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27322256

RESUMEN

Human adipose-derived stem cells (hASCs) have a capacity to undergo adipogenic, chondrogenic, and osteogenic differentiation. Recently, hASCs were applied to various fields including cell therapy for tissue regeneration. However, it is hard to predict the direction of differentiation of hASCs in real-time. Matrix metalloproteinases (MMPs) are one family of proteolytic enzymes that plays a pivotal role in regulating the biology of stem cells. MMPs secreted by hASCs are expected to show different expression patterns depending on the differentiation state of hASCs because biological functions exhibit different patterns during the differentiation of stem cells. Here, we investigated proteolytic enzyme activity, especially MMP-2 activity, in hASCs during their differentiation. The activities of proteolytic enzymes and MMP-2 were higher during chondrogenic differentiation than during adipogenic and osteogenic differentiation. During chondrogenic differentiation, mRNA expression of MMP-2 and the level of the active form of MMP-2 were increased, which also correlated with Col II. It is concluded that proteolytic enzyme activity and the level of the active form of MMP-2 were increased during chondrogenic differentiation, which was accelerated in the presence of Col II protein. According to our findings, MMP-2 could be a candidate maker for real-time detection of chondrogenic differentiation of hASCs.


Asunto(s)
Tejido Adiposo/citología , Diferenciación Celular , Condrocitos/citología , Metaloproteinasa 2 de la Matriz/metabolismo , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Condrocitos/metabolismo , Humanos , Metaloproteinasa 2 de la Matriz/genética , Células Madre Mesenquimatosas/citología
11.
Macromol Biosci ; 16(2): 199-206, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26439948

RESUMEN

The stiffness of hydrogels has been reported to direct cell fate. Here, we found that the stiffness of hydrogels promotes the reprogramming of mouse embryonic fibroblasts into induced pluripotent stem cells (iPSCs). We prepared cell culture substrates of various stiffnesses (0.1, 1, 4, 10, and 20 kPa) using a polyacrylamide hydrogel. We found that culture on a soft hydrogel plays an important role in inducing cellular reprogramming into iPSCs via activation of mesenchymal-to-epithelial transition and enhancement of stemness marker expression. These results suggest that physical signals at the interface between cell and substrate can be used as a potent regulator to promote cell fate changes associated with reprogramming into iPSCs, which may lead to effective and reproducible iPSC-production.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Reprogramación Celular , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Hidrogeles/química , Células Madre Pluripotentes Inducidas/metabolismo , Animales , Embrión de Mamíferos/citología , Fibroblastos/citología , Células Madre Pluripotentes Inducidas/citología , Ratones
12.
Oncol Rep ; 28(6): 2049-56, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22992992

RESUMEN

Anthocyanins (ATCs) have been reported to induce apoptosis in various types of cancer cells, stimulating the development of ATCs as a cancer chemotherapeutic or chemopreventive agent. It was recently reported that ATCs can induce autophagy, however, the mechanism for this remains unclear. In the present report, we carried out mechanistic studies of the mechanism involved in ATC-induced autophagy using ATCs extracted from black soybeans (cv. Cheongja 3, Glycine max L.). ATCs clearly induced hallmarks of autophagy, including LC3 puncta formation and the conversion of LC3-I to LC3-II in U2OS human osteosarcoma cells. The induction of autophagy was accompanied by the phosphorylation of multiple protein kinases including extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), protein kinase B (AKT) and adenosyl mono-phosphate-dependent protein kinase (AMPK). While chemical inhibitors against ERK1/2, p38 MAPK, JNK and AKT failed to inhibit ATC-induced autophagy, the suppression of AMPK by compound C (CC) as well as siRNA against AMPK reduced ATC-induced autophagy. The treatment of ATCs resulted in a decrease in intracellular ATP contents and the activation of AMPK by AICAR treatment also induced autophagy. It is noteworthy that the reduction of autophagy via the inhibition of AMPK resulted in enhanced apoptosis in ATC-treated cells. In addition, siRNA against forkhead box O3A (FOXO3a), a downstream target of AMPK, suppressed ATC-induced autophagy and p27KIP1 siRNA increased apoptosis in ATC-treated cells. Collectively, it can be concluded that ATCs induce autophagy in U2OS cells via activation of the AMPK-FOXO3a pathway and protect cells from ATC-induced apoptosis via the AMPK-p27KIP1 pathway. These results also suggest that autophagy-modulating agents could contribute to the efficient development of ATCs as anticancer therapy.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antocianinas/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Glycine max/química , Osteosarcoma/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Apoptosis/genética , Línea Celular Tumoral , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Humanos , Osteosarcoma/patología , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal
13.
Prostaglandins Other Lipid Mediat ; 91(1-2): 30-7, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20044024

RESUMEN

HL-60 cells treated by prostaglandin (PG) A(2) showed characteristics of apoptosis such as accumulation of hypodiploid and annexin V positive cells, condensed and fragmented nuclei, cytochrome c (Cyt C) release from mitochondria and activation of caspase-1, -2, -3, -7 and -9. PGA(2)-induced cell death was rescued by inhibitors of caspase-9 and -3, but PGA(2)-induced Cyt C release was not prevented by caspase inhibitors. During Cyt C release by PGA(2), mitochondrial transmembrane potential was maintained and mitochondrial permeability transition pore was not formed. In addition, anti-apoptotic BCL-2 family proteins like BCL-2 and BCL-XL, and ROS scavengers including ascorbic acid and 2,2,6,6-tetramethyl-1-piperidinyloxy were not able to inhibit Cyt C release as well as apoptosis by PGA(2). Finally, it was shown that PGA(2)-induced Cyt C release in vitro from purified mitochondria in the absence of cytosolic components. Furthermore, thiol-containing compounds such as N-acetylcysteine, l-cysteine and monothioglycerol prevented Cyt C release, and hence induction of apoptosis. Taken together, these results suggest that PGA(2) activates intrinsic apoptotic pathway by directly stimulating mitochondrial outer membrane permeabilization to release Cyt C, in which thiol-reactivity of PGA(2) plays a pivotal role.


Asunto(s)
Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Prostaglandinas A/metabolismo , Prostaglandinas A/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Caspasa 3/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Citocromos c/metabolismo , Activación Enzimática/efectos de los fármacos , Depuradores de Radicales Libres/metabolismo , Células HL-60 , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/metabolismo
14.
Korean J Physiol Pharmacol ; 14(6): 407-12, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21311682

RESUMEN

3-Deazaadenosine (DZA), a potent inhibitor of S-adenosylhomocysteine hydrolase, was previously proposed to induce intrinsic apoptosis in human leukemic cells. In the present study, we analyzed the mechanism underlying the DZA-induced intrinsic apoptotic pathway. DZA activated typical caspase-dependent apoptosis in HL-60 cells, as demonstrated by an accumulation of hypo-diploidic cells, the processing of multiple procaspases and an inhibitory effect of z-VAD-Fmk on this cell death. During DZA-induced apoptosis, cytochrome c (cyt c) was released into the cytosol. This was neither prevented by z-VAD-Fmk and nor was it associated with the dissipation of mitochondrial membrane potential (ΔΨ(m)). Prior to the release of cyt c, BAX was translocated from the cytosol to mitochondria and underwent oligomerization. Finally, the overexpression of BCL-XL protected HL-60 cells from apoptosis by blocking both the cyt c release and BAX oligomerization. Collectively, these findings suggest that DZA may activate intrinsic apoptosis by stimulating BAX activation and thereby the release of cyt c.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA