Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Pharmacol Rep ; 76(2): 368-378, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38498259

RESUMEN

BACKGROUND: Excessive stress, a major problem in modern societies, affects people of all ages worldwide. Corticosterone is one of the most abundant hormones secreted during stressful conditions and is associated with various dysfunctions in the body. In particular, we aimed to investigate the protective effects of hygrolansamycin C (HYGC) against corticosterone-induced cellular stress, a manifestation of excessive stress prevalent in contemporary societies. METHODS: We isolated HYGC from Streptomyces sp. KCB17JA11 and subjected PC12 cells to corticosterone-induced stress. The effects of HYGC were assessed by measuring autophagy and the expression of mitogen-activated protein kinase (MAPK) phosphorylation-related genes. We used established cellular and molecular techniques to analyze protein levels and pathways. RESULTS: HYGC effectively protected cells against corticosterone-induced injury. Specifically, it significantly reduced corticosterone-induced oxidative stress and inhibited the expression of autophagy-related proteins induced by corticosterone, which provided mechanistic insight into the protective effects of HYGC. At the signaling level, HYGC suppressed c-Jun N-terminal kinase and extracellular signal-regulated kinase phosphorylation and p38 activation. CONCLUSIONS: HYGC is a promising candidate to counteract corticosterone-induced apoptosis and oxidative stress. Autophagy and MAPK pathway inhibition contribute to the protective effects of HYGC. Our findings highlight the potential of HYGC as a therapeutic agent for stress-related disorders and serve as a stepping stone for further exploration and development of stress management strategies.


Asunto(s)
Corticosterona , Proteínas Quinasas p38 Activadas por Mitógenos , Ratas , Animales , Humanos , Corticosterona/toxicidad , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Estrés Oxidativo , Transducción de Señal , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Apoptosis , Autofagia
3.
Arch Pharm Res ; 47(3): 272-287, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38416389

RESUMEN

Gymnopilus orientispectabilis, also known as "big laughter mushroom," is a hallucinogenic poisonous mushroom that causes excessive laughter upon ingestion. From the fruiting bodies of G. orientispectabilis, eight lanostane-type triterpenoids (1-8), including seven novel compounds: gymnojunols A-G (2-8), were isolated. The chemical structures of these new compounds (2-8) were determined by analyzing their 1D and 2D NMR spectra and HR-EISMS, and their absolute configurations were unambiguously assigned by quantum chemical ECD calculations and a computational method coupled with a statistical procedure (DP4+). Upon evaluating autophagic activity, compounds 2, 6, and 7 increased LC3B-II levels in HeLa cells to a similar extent as bafilomycin, an autophagy inhibitor. In contrast, compound 8 decreased the levels of both LC3B-I and LC3B-II, and a similar effect was observed following treatment with rapamycin, an autophagy inducer. Our findings provide experimental evidence for new potential autophagy modulators in the hallucinogenic poisonous mushroom G. orientispectabilis.


Asunto(s)
Agaricales , Venenos , Triterpenos , Humanos , Triterpenos/farmacología , Triterpenos/química , Venenos/análisis , Estructura Molecular , Células HeLa , Agaricales/química , Cuerpos Fructíferos de los Hongos/química
4.
Talanta ; 271: 125715, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38280264

RESUMEN

Determining the activity of lysosomal ß-hexosaminidase in cells is of great importance for understanding the roles that these enzymes play in pathophysiological events. Herein, we designed the new fluorescent probe, ßGalNAc-Rhod-CM(NEt2), which consisted of a ßGalNAc-linked rhodol unit serving as a ß-hexosaminidase reactive fluorogenic moiety and a N,N'-diethylaminocoumarin (CM(NEt2)) group acting as a fluorescence marker for determining the degree of cell permeabilization. Treatment of ßGalNAc-Rhod-CM(NEt2) with ß-hexosaminidase promoted generation of Rhod-CM(NEt2), thereby leading to an increase in the intensity of fluorescence of Rhod. However, this probe did not respond to the functionally related glycosidase, O-GlcNAcase. The detection limit of ßGalNAc-Rhod-CM(NEt2) for ß-hexosaminidase was determined to be 0.52 nM, indicating that it has high sensitivity for this enzyme. Furthermore, the probe functioned as an excellent fluorogenic substrate for ß-hexosaminidase with kcat and Km values of 17 sec-1 and 22 µM, respectively. The results of cell studies using ßGalNAc-Rhod-CM(NEt2) showed that levels of ß-hexosaminidase activity in cells can be determined by measuring the intensity of fluorescence arising from Rhod and that the intensity of fluorescence of CM(NEt2) can be employed to determine the degree of cell permeabilization of the probe. Utilizing the new probe, we assessed ß-hexosaminidase activities in several types of cells and evaluated the effect of glucose concentrations in culture media on the activity of this enzyme.


Asunto(s)
Colorantes Fluorescentes , beta-N-Acetilhexosaminidasas , Colorantes Fluorescentes/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo , Lisosomas/metabolismo , Acetilglucosaminidasa/metabolismo
5.
Cells ; 12(24)2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38132116

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic and refractory interstitial lung disease. Although there is no cure for IPF, the development of drugs with improved efficacy in the treatment of IPF is required. Daphnetin, a natural coumarin derivative, has immunosuppressive, anti-inflammatory, and antioxidant activities. However, its antifibrotic effects have not yet been elucidated. In this study, we investigated the antifibrotic effects of daphnetin on pulmonary fibrosis and the associated molecular mechanism. We examined the effects of daphnetin on splenocytes cultured in Th17 conditions, lung epithelial cells, and a mouse model of bleomycin (BLM)-induced pulmonary fibrosis. We identified that daphnetin inhibited IL-17A production in developing Th17 cells. We also found that daphnetin suppressed epithelial-to-mesenchymal transition (EMT) in TGF-ß-treated BEAS2B cells through the regulation of AKT phosphorylation. In BLM-treated mice, the oral administration of daphnetin attenuated lung histopathology and improved lung mechanical functions. Our findings clearly demonstrated that daphnetin inhibited IL-17A and EMT both in vitro and in vivo, thereby protecting against BLM-induced pulmonary fibrosis. Taken together, these results suggest that daphnetin has potent therapeutic effects on lung fibrosis by modulating both Th17 differentiation and the TGF-ß signaling pathway, and we thus expect daphnetin to be a drug candidate for the treatment of IPF.


Asunto(s)
Bleomicina , Fibrosis Pulmonar Idiopática , Ratones , Animales , Bleomicina/efectos adversos , Interleucina-17/metabolismo , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Factor de Crecimiento Transformador beta/metabolismo
6.
ACS Omega ; 8(41): 38263-38271, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867696

RESUMEN

Liquid chromatography-mass spectrometry (LC-MS/MS)-based molecular networking analysis was applied to Streptomyces sp. MC16. The automatic classification of the MolNetEnhancer module revealed that its major constituent was an angucycline derivative. By targeted isolation of unique clusters in the molecular network, which showed different patterns from typical angucycline compounds, two new N-acetylcysteine-attached angucycline derivatives (1 and 2) were isolated. The structures were elucidated based on intensive NMR analysis and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). All isolated compounds (1-4) were tested for their inhibitory effects on the proliferation of A431, A549, and HeLa cell lines. Antibiotics 100-1 (3) and vineomycinone B2 (4) showed moderate inhibitory effects on these three cell lines with IC50 values ranging from 18.5 to 59.0 µM, while compounds 1 and 2 with an additional N-acetylcysteine residue showed weak inhibitory effects only on the HeLa cell line with IC50 values of 54.7 and 65.2 µM, respectively.

7.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894759

RESUMEN

Monitoring the microenvironment within specific cellular regions is crucial for a comprehensive understanding of life events. Fluorescent probes working in different ranges of pH regions have been developed for the local imaging of different pH environments. Especially, rhodamine-based fluorescent pH probes have been of great interest due to their ON/OFF fluorescence depending on the spirolactam ring's opening/closure. By introducing the N-alkyl-hydroxamic acid instead of the alkyl amines in the spirolactam of rhodamine, we were able to tune the pH range where the ring opening and closing of the spirolactam occurs. This six-membered cyclic hydroxamate spirolactam ring of rhodamine B proved to be highly fluorescent in acidic pH environments. In addition, we could monitor pH changes of lysosomes in live cells and zebrafish.


Asunto(s)
Colorantes Fluorescentes , Pez Cebra , Animales , Concentración de Iones de Hidrógeno , Rodaminas , Lisosomas
8.
J Microbiol Biotechnol ; 33(11): 1437-1447, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37670557

RESUMEN

A recently bioinformatic analysis of genomic sequences of fungi indicated that fungi are able to produce more secondary metabolites than expected. Despite their potency, many biosynthetic pathways are silent in the absence of specific culture conditions or chemical cues. To access cryptic metabolism, 108 fungal strains isolated from various sites were cultured with or without Streptomyces sp. 13F051 which mainly produces trichostatin analogues, followed by comparison of metabolic profiles using LC-MS. Among the 108 fungal strains, 14 produced secondary metabolites that were not recognized or were scarcely produced in mono-cultivation. Of these two fungal strains, Myrmecridium schulzeri 15F098 and Scleroconidioma sphagnicola 15S058 produced four new compounds (1-4) along with a known compound (5), demonstrating that all four compounds were produced by physical interaction with Streptomyces sp. 13F051. Bioactivity evaluation indicated that compounds 3-5 impede migration of MDA-MB-231 breast cancer cells.


Asunto(s)
Actinobacteria , Inhibidores de Histona Desacetilasas , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/metabolismo , Técnicas de Cocultivo , Actinobacteria/genética , Actinobacteria/metabolismo , Hongos/metabolismo , Metaboloma , Metabolismo Secundario/genética
9.
J Microbiol Biotechnol ; 32(10): 1299-1306, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36198661

RESUMEN

Six ansamycin derivatives were isolated from the culture broth of Streptomyces sp. KCB17JA11, including four new hygrolansamycins A-D (1-4) and known congeners divergolide O (5) and hygrocin C (6). Compounds 1-5 featured an unusual six-membered O-heterocyclic moiety. The isolation workflow was guided by a Molecular Networking-based dereplication strategy. The structures of 1-4 were elucidated using NMR and HRESIMS experiments, and the absolute configuration was established by the Mosher's method. Compound 2 exhibited mild cytotoxicity against five cancer cell lines with IC50 values ranging from 24.60 ± 3.37 µM to 49.93 ± 4.52 µM.


Asunto(s)
Streptomyces , Streptomyces/química , Macrólidos/química , Estructura Molecular , Antibacterianos/farmacología , Lactamas Macrocíclicas
10.
J Nat Prod ; 85(10): 2445-2453, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36197044

RESUMEN

A new secondary metabolite, ulleungdolin (1), was isolated from the co-culture of an actinomycete, Streptomyces sp. 13F051, and a fungus, Leohumicola minima 15S071. Based on the NMR, UV, and MS data, it was deduced that the planar structure of 1 comprised an isoindolinone (IsoID) with an octanoic acid, a tripeptide, and a sugar. The tripeptide has the unprecedented amino acids norcoronamic acid, 3-hydroxy-glutamine, and 4-hydroxy-phenylglycine and is linked by a C-N bond with IsoID. The absolute configurations were determined by chemical derivatization, extensive spectroscopic methods, and electronic circular dichroism calculations and supported by bioinformatic analyses. Bioactivity evaluation studies indicated that 1 had an antimigration effect on MDA-MB-231 breast cancer cells.


Asunto(s)
Ascomicetos , Policétidos , Streptomyces , Streptomyces/química , Policétidos/farmacología , Policétidos/química , Técnicas de Cocultivo , Estructura Molecular , Péptidos
11.
RSC Adv ; 12(35): 22360-22366, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36105948

RESUMEN

Two new polyketide glycosides jejuketomycins A (1) and B (2), were isolated from a culture of Streptomyces sp. KCB15JA151. Their chemical structures including the absolute configurations were determined by detailed analyses of the NMR and HRMS data and ECD calculations and spectral data. Compounds 1 and 2 possess an unusual 6/6/8 tricyclic ring system. Biological evaluation with the wound healing assay and time-lapse cell tracking analysis revealed that compounds 1 and 2 have significant inhibitory activities against cancer cell migration with low cytotoxicity.

12.
ACS Appl Bio Mater ; 5(5): 2232-2239, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35446530

RESUMEN

Acetylcholinesterase (AChE) is a pivotal enzyme that is closely related with multiple neurological diseases, such as brain disorders or alterations in the neurotransmission and cancer. The development of convenient methods for imaging AChE activity in biological samples is very important to understand its mechanisms and functions in a living system. Herein, a fluorescent probe exhibiting emission in the near-infrared (NIR) region is developed to detect AChE and visualize biological AChE activities. This probe exhibits a quick response time, reasonable detection limit, and a large Stokes shift accompanied by the NIR emission. The probe has much better reactivity toward AChE than butyrylcholinesterase, which is one of the significant interfering substances. The outstanding specificity of the probe is proved by cellular imaging AChE activity and successful mapping in different regions of zebrafish. Such an effective probe can greatly contribute to ongoing efforts to design emission probes that have distinct properties to assay AChE in biological systems.


Asunto(s)
Acetilcolinesterasa , Pez Cebra , Animales , Butirilcolinesterasa , Colorantes Fluorescentes , Imagen Óptica
13.
Eur J Pharmacol ; 923: 174938, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35381263

RESUMEN

Kurarinone (KR), a naturally occurring flavonoid in Sophora flavescens Aiton and a traditional herbal medicine, reportedly has anti-cancer activity against various cancer types both in vitro and in vivo. However, the cellular mechanism of KR remains unknown. Therefore, we aimed to elucidate the mechanism of cell cycle arrest induced by KR in human colorectal cancer cells. KR not only reduced cell proliferation but also induced G0/G1 arrest of colorectal cancer cell lines. The results of western blotting analysis showed that KR reduced the protein levels of cyclin D1/D3 and CDK4/6 by downregulating signaling proteins such as K-RAS, c-MYC, and p-extracellular signal-regulated kinase. Additionally, KR arrested the cell cycle in the G0/G1 phase in a p53-independent manner, and decreased the protein level of K-RAS by proteasomal degradation dependent on WDR76, an E3 ubiquitin ligase. From these results, we propose that KR could be a potent anti-cancer agent, acting through the degradation of K-RAS dependent on WDR76, regardless of the p53 status.


Asunto(s)
Proteínas de Ciclo Celular , Neoplasias Colorrectales , Proteínas de Unión al ADN , Flavonoides , Apoptosis , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas de Unión al ADN/metabolismo , Flavonoides/farmacología , Puntos de Control de la Fase G1 del Ciclo Celular , Humanos , Proteínas Proto-Oncogénicas p21(ras) , Proteína p53 Supresora de Tumor/metabolismo
14.
Arch Pharm Res ; 45(2): 105-113, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35201589

RESUMEN

Phenalenone derivatives sourced from fungi are polyketides that have attracted significant interest because of their diverse chemical structures and potential bioactivities. As part of our ongoing quest to discover novel natural products with biological properties from diverse natural resources, three unreported phenalenone derivatives (1-3), named ent-12-methoxyisoherqueinone (1), (-)-scleroamide (2), and (+)-scleroamide (3), together with four known phenalenone derivatives, ent-atrovenetinone (4), isoherqueinone (5), herqueinone (6), and ent-peniciherquinone (7) were isolated from the Hawaiian soil fungus Penicillium herquei FT729, collected on the Big Island, Hawaii. Compounds 2 and 3 were enantiomers, which were separated using a chiral-phase HPLC column, which provided optically pure compounds 2 and 3. The structures of the novel compounds were established by extensive spectroscopic analyses, including 1D and 2D NMR and high-resolution ESIMS. Their absolute configurations were determined using quantum chemical electronic circular dichroism (ECD) calculations. The inhibitory activity of the isolated compounds (1-7) against indoleamine 2,3-dioxygenase 1 (IDO1) was assessed. Compounds 1, 5-7 inhibited IDO1, with IC50 values of 32.59, 36.86, 19.05, and 24.18 µM, respectively. These findings demonstrated that the phenalenone derivatives 1 and 5-7, as IDO1 inhibitors, are promising anticancer immunotherapeutic agents.


Asunto(s)
Antineoplásicos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Penicillium , Fenalenos/farmacología , Microbiología del Suelo , Antineoplásicos/química , Hawaii , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/efectos de los fármacos , Concentración 50 Inhibidora , Fenalenos/química , Relación Estructura-Actividad
15.
J Microbiol Biotechnol ; 32(3): 302-306, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35058400

RESUMEN

A chemical investigation of a culture extract from Streptomyces sp. RK85-270 led to the isolation and characterization of two new oxindoles, RK-270D (1) and E (2). The structures of 1 and 2 were determined by analyzing spectroscopic and spectrometric data from 1D and 2D NMR and High-resolution electrospray ionization mass spectrometry (HRESIMS) experiments. Compound 1 exhibited anti-angiogenic activities against human umbilical vein endothelial cells (HUVECs) without cytotoxicity. Results of Western blot analysis revealed that 1 inhibits VEGF-induced angiogenesis in the HUVECs via VEGFR2/ p38 MAPK-mediated pathway.


Asunto(s)
Streptomyces , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Oxindoles/metabolismo , Oxindoles/farmacología
16.
Bioorg Med Chem Lett ; 57: 128504, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34922027

RESUMEN

Two new fusicoccane-type diterpenoids, streptooctatins A (1) and B (2), together with a known compound cyclooctatin (3) were isolated from Streptomyces sp. KCB17JA11. The structures of 1 and 2 were determined by analyzing spectroscopic and spectrometric data from 1D and 2D NMR and HRESIMS experiments. Compounds 1 and 2 induced EGFP-LC3 puncta indicating autophagic activities against HeLa cells without cytotoxicity.


Asunto(s)
Autofagia/efectos de los fármacos , Diterpenos/farmacología , Streptomyces/química , Diterpenos/química , Diterpenos/aislamiento & purificación , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Estructura Molecular , Estereoisomerismo
17.
J Microbiol Biotechnol ; 31(12): 1667-1671, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34528916

RESUMEN

A new homocysteine thiolactone derivative, thiolactomide (1), was isolated along with a known compound, N-acetyl homocysteine thiolactone (2), from a culture extract of soil-derived Streptomyces sp. RK88-1441. The structures of these compounds were elucidated by detailed NMR and MS spectroscopic analyses with literature study. In addition, biological evaluation studies revealed that compounds 1 and 2 both exert neuroprotective activity against 6-hydroxydopamine (6-OHDA)-mediated neurotoxicity by blocking the generation of hydrogen peroxide in neuroblastoma SH-SY5Y cells.


Asunto(s)
Homocisteína/análogos & derivados , Fármacos Neuroprotectores/farmacología , Streptomyces/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Homocisteína/química , Homocisteína/farmacología , Humanos , Peróxido de Hidrógeno/metabolismo , Estructura Molecular , Fármacos Neuroprotectores/química , Oxidopamina/toxicidad , Microbiología del Suelo
18.
J Nat Prod ; 84(9): 2420-2426, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34455777

RESUMEN

Three new trichostatin analogues, ulleunganilines A-C (1-3), and seven known trichostatins (4-10) were isolated from cultures of Streptomyces sp. 13F051. NMR, UV, and MS data indicated that the planar structures of 1-3 consisted of modified side chains in the trichostatic acid moiety. The absolute configuration of the 2,4-dimethyl-branched carbon chains in 1 and 2 was determined by the PGME method, while the amino acid group in 3 was identified by advanced Marfey's method. Based on the structure of the modified side chains, the origin of 1-3 is proposed. Further experiments indicated that 1 and 3 displayed moderate histone deacetylase inhibitory activity, suggesting that not only the hydroxamate group but also the N,N-dimethyl group were essential for the inhibitory activity.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Línea Celular Tumoral , Inhibidores de Histona Desacetilasas/aislamiento & purificación , Humanos , Ácidos Hidroxámicos/aislamiento & purificación , Estructura Molecular , República de Corea , Microbiología del Suelo , Streptomyces/química
19.
Bioorg Med Chem Lett ; 48: 128237, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34216745

RESUMEN

Two angucyclines, pseudonocardones D (1) and E (2), were isolated from Streptomyces sp. KCB15JA151. The planar structure was elucidated by comprehensive spectroscopic analysis. The absolute configuration of the sugar unit was determined based on the basis of coupling constants, ROESY, chemical derivatization and HPLC analysis. The biological activities of compounds 1 and 2 were examined by performing a computational target prediction, which led to tests of the antiestrogenic activity. The result suggested that compound 1 might be an ERα antagonist.


Asunto(s)
Receptor alfa de Estrógeno/antagonistas & inhibidores , Ácido Glucurónico/farmacología , Streptomyces/química , Relación Dosis-Respuesta a Droga , Receptor alfa de Estrógeno/metabolismo , Ácido Glucurónico/química , Ácido Glucurónico/aislamiento & purificación , Humanos , Estructura Molecular , Relación Estructura-Actividad
20.
Chembiochem ; 22(24): 3425-3430, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34263972

RESUMEN

A novel autophagy inhibitor, autophazole (Atz), which promoted cancer cell death via caspase activation, is described. This compound was identified from cell-based high-content screening of an imidazole library. The results showed that Atz was internalized into lysosomes of cells where it induced lysosomal membrane permeabilization (LMP). This process generated nonfunctional autolysosomes, thereby inhibiting autophagy. In addition, Atz was found to promote LMP-mediated apoptosis. Specifically, LMP induced by Atz caused release of cathepsins from lysosomes into the cytosol. Cathepsins in the cytosol cleaved Bid to generate tBid, which subsequently activated Bax to induce mitochondrial outer membrane permeabilization (MOMP). This event led to cancer cell death via caspase activation. Overall, the findings suggest that Atz will serve as a new chemical probe in efforts aimed at gaining a better understanding of the autophagic process.


Asunto(s)
Antineoplásicos/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Antineoplásicos/química , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA