Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
3.
Biosystems ; 236: 105122, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199520

RESUMEN

The integration of multiple omics data promises to reveal new insights into the pathogenic mechanisms of complex human diseases, with the potential to identify avenues for the development of targeted therapies for disease subtypes. However, the extraction of diagnostic/disease-specific biomarkers from multiple omics data with biological pathway knowledge is a challenging issue in precision medicine. In this paper, we present a novel computational method to identify diagnosis-specific trans-omic biomarkers from multiple omics data. In the algorithm, we integrated multi-class sparse canonical correlation analysis (MSCCA) and molecular pathway analysis in order to derive discriminative molecular features that are correlated across different omics layers. We applied our proposed method to analyzing proteome and metabolome data of heart failure (HF), and extracted trans-omic biomarkers for HF subtypes; specifically, ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM). We were able to detect not only individual proteins that were previously reported from single-omics studies but also correlated protein-metabolite pairs characteristic of HF disease subtypes. For example, we identified hexokinase1(HK1)-d-fructose-6-phosphate as a paired trans-omic biomarker for DCM, which could significantly perturb amino-sugar metabolism. Our proposed method is expected to be useful for various applications in precision medicine.


Asunto(s)
Algoritmos , Medicina de Precisión , Humanos , Biomarcadores/análisis , Proteoma , Metaboloma
5.
JACC Heart Fail ; 12(4): 648-661, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37930291

RESUMEN

BACKGROUND: Reliable predictors of treatment efficacy in heart failure have been long awaited. DNA damage has been implicated as a cause of heart failure. OBJECTIVES: The purpose of this study was to investigate the association of DNA damage in myocardial tissue with treatment response and prognosis of heart failure. METHODS: The authors performed immunostaining of DNA damage markers poly(ADP-ribose) (PAR) and γ-H2A.X in endomyocardial biopsy specimens from 175 patients with heart failure with reduced ejection fraction (HFrEF) of various underlying etiologies. They calculated the percentage of nuclei positive for each DNA damage marker (%PAR and %γ-H2A.X). The primary outcome was left ventricular reverse remodeling (LVRR) at 1 year, and the secondary outcome was a composite of cardiovascular death, heart transplantation, and ventricular assist device implantation. RESULTS: Patients who did not achieve LVRR after the optimization of medical therapies presented with significantly higher %PAR and %γ-H2A.X. The ROC analysis demonstrated good performance of both %PAR and %γ-H2A.X for predicting LVRR (AUCs: 0.867 and 0.855, respectively). There was a negative correlation between the mean proportion of DNA damage marker-positive nuclei and the probability of LVRR across different underlying diseases. In addition, patients with higher %PAR or %γ-H2A.X had more long-term clinical events (PAR HR: 1.63 [95% CI: 1.31-2.01]; P < 0.001; γ-H2A.X HR: 1.48 [95% CI: 1.27-1.72]; P < 0.001). CONCLUSIONS: DNA damage determines the consequences of human heart failure. Assessment of DNA damage is useful to predict treatment efficacy and prognosis of heart failure patients with various underlying etiologies.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Función Ventricular Izquierda/fisiología , Volumen Sistólico/fisiología , Miocardio , Resultado del Tratamiento , Pronóstico , Marcadores Genéticos , Remodelación Ventricular/fisiología
7.
Commun Biol ; 6(1): 666, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353597

RESUMEN

Activation of the cholinergic anti-inflammatory pathway (CAP) via vagus nerve stimulation has been shown to improve acute kidney injury in rodent models. While alpha 7 nicotinic acetylcholine receptor (α7nAChR) positive macrophages are thought to play a crucial role in this pathway, their in vivo significance has not been fully understood. In this study, we used macrophage-specific α7nAChR-deficient mice to confirm the direct activation of α7nAChRs in macrophages. Our findings indicate that the administration of GTS-21, an α7nAChR-specific agonist, protects injured kidneys in wild-type mice but not in macrophage-specific α7nAChR-deficient mice. To investigate the signal changes or cell reconstructions induced by α7nAChR activation in splenocytes, we conducted single-cell RNA-sequencing of the spleen. Ligand-receptor analysis revealed an increase in macrophage-macrophage interactions. Using macrophage-derived cell lines, we demonstrated that GTS-21 increases cell contact, and that the contact between macrophages receiving α7nAChR signals leads to a reduction in TNF-α. Our results suggest that α7nAChR signaling increases macrophage-macrophage interactions in the spleen and has a protective effect on the kidneys.


Asunto(s)
Receptores Nicotínicos , Animales , Ratones , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Macrófagos/metabolismo , Antiinflamatorios/metabolismo , Comunicación Celular
8.
J Card Fail ; 29(6): 931-938, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37321698

RESUMEN

Despite decades of intensive research and therapeutic development, heart failure remains a leading cause of death worldwide. However, recent advances in several basic and translational research fields, such as genomic analysis and single-cell analysis, have increased the possibility of developing novel diagnostic approaches to heart failure. Most cardiovascular diseases that predispose individuals to heart failure are caused by genetic and environmental factors. It follows that genomic analysis can contribute to the diagnosis and prognostic stratification of patients with heart failure. In addition, single-cell analysis has shown great potential for unveiling the pathogenesis and/or pathophysiology and for discovering novel therapeutic targets for heart failure. Here, we summarize the recent advances in translational research on heart failure in Japan, based mainly on our studies.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/epidemiología , Insuficiencia Cardíaca/genética , Investigación Biomédica Traslacional , Japón/epidemiología , Pronóstico
9.
Sci Adv ; 9(15): eade7047, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37058558

RESUMEN

Mutations in the LMNA gene encoding Lamin A and C (Lamin A/C), major components of the nuclear lamina, cause laminopathies including dilated cardiomyopathy (DCM), but the underlying molecular mechanisms have not been fully elucidated. Here, by leveraging single-cell RNA sequencing (RNA-seq), assay for transposase-accessible chromatin using sequencing (ATAC-seq), protein array, and electron microscopy analysis, we show that insufficient structural maturation of cardiomyocytes owing to trapping of transcription factor TEA domain transcription factor 1 (TEAD1) by mutant Lamin A/C at the nuclear membrane underlies the pathogenesis of Q353R-LMNA-related DCM. Inhibition of the Hippo pathway rescued the dysregulation of cardiac developmental genes by TEAD1 in LMNA mutant cardiomyocytes. Single-cell RNA-seq of cardiac tissues from patients with DCM with the LMNA mutation confirmed the dysregulated expression of TEAD1 target genes. Our results propose an intervention for transcriptional dysregulation as a potential treatment of LMNA-related DCM.


Asunto(s)
Cardiomiopatía Dilatada , Humanos , Cardiomiopatía Dilatada/metabolismo , Lamina Tipo A/genética , Miocitos Cardíacos/metabolismo , Mutación , Factores de Transcripción de Dominio TEA
11.
JMA J ; 5(4): 399-406, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36407067

RESUMEN

Heart failure (HF) is a leading cause of death worldwide. In Japan, the number of HF patients has increased with its aging population, resulting in "HF pandemic." HF is the final stage of various cardiovascular diseases, including valvular heart disease, ischemic heart disease, atrial fibrillation, and hypertension. Cardiac hypertrophy is a compensatory response to increased workload and maintains cardiac function. Pressure overload due to mechanical stress causes cardiac hypertrophy, whereas continuous cardiac stress reduces wall thickness and consequently causes HF. Understanding the molecular mechanisms underlying this process is crucial to elucidate HF pathophysiology. We demonstrated that ischemia and DNA damage are important in the progression of hypertrophy to HF. Genetic mutations associated with cardiomyopathy and prognosis has been identified. To realize precision medicines for HF, the underlying molecular mechanisms need to be elucidated. In this review, we introduce new paradigms for understanding HF pathophysiology discovered through basic research.

12.
Circ J ; 87(1): 120-122, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36123041

Asunto(s)
Genómica , Humanos , Autopsia
13.
Front Cell Dev Biol ; 10: 929256, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898398

RESUMEN

Pathological heart injuries such as myocardial infarction induce adverse ventricular remodeling and progression to heart failure owing to widespread cardiomyocyte death. The adult mammalian heart is terminally differentiated unlike those of lower vertebrates. Therefore, the proliferative capacity of adult cardiomyocytes is limited and insufficient to restore an injured heart. Although current therapeutic approaches can delay progressive remodeling and heart failure, difficulties with the direct replenishment of lost cardiomyocytes results in a poor long-term prognosis for patients with heart failure. However, it has been revealed that cardiac function can be improved by regulating the cell cycle or changing the cell state of cardiomyocytes by delivering specific genes or small molecules. Therefore, manipulation of cardiomyocyte plasticity can be an effective treatment for heart disease. This review summarizes the recent studies that control heart regeneration by manipulating cardiomyocyte plasticity with various approaches including differentiating pluripotent stem cells into cardiomyocytes, reprogramming cardiac fibroblasts into cardiomyocytes, and reactivating the proliferation of cardiomyocytes.

15.
Nat Commun ; 13(1): 3275, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672400

RESUMEN

Tissue fibrosis and organ dysfunction are hallmarks of age-related diseases including heart failure, but it remains elusive whether there is a common pathway to induce both events. Through single-cell RNA-seq, spatial transcriptomics, and genetic perturbation, we elucidate that high-temperature requirement A serine peptidase 3 (Htra3) is a critical regulator of cardiac fibrosis and heart failure by maintaining the identity of quiescent cardiac fibroblasts through degrading transforming growth factor-ß (TGF-ß). Pressure overload downregulates expression of Htra3 in cardiac fibroblasts and activated TGF-ß signaling, which induces not only cardiac fibrosis but also heart failure through DNA damage accumulation and secretory phenotype induction in failing cardiomyocytes. Overexpression of Htra3 in the heart inhibits TGF-ß signaling and ameliorates cardiac dysfunction after pressure overload. Htra3-regulated induction of spatio-temporal cardiac fibrosis and cardiomyocyte secretory phenotype are observed specifically in infarct regions after myocardial infarction. Integrative analyses of single-cardiomyocyte transcriptome and plasma proteome in human reveal that IGFBP7, which is a cytokine downstream of TGF-ß and secreted from failing cardiomyocytes, is the most predictable marker of advanced heart failure. These findings highlight the roles of cardiac fibroblasts in regulating cardiomyocyte homeostasis and cardiac fibrosis through the Htra3-TGF-ß-IGFBP7 pathway, which would be a therapeutic target for heart failure.


Asunto(s)
Insuficiencia Cardíaca , Factor de Crecimiento Transformador beta , Fibroblastos/metabolismo , Fibrosis , Insuficiencia Cardíaca/metabolismo , Humanos , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
16.
Front Immunol ; 12: 763647, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745139

RESUMEN

Heart failure is a complex clinical syndrome characterized by insufficient cardiac function. Heart-resident and infiltrated macrophages have been shown to play important roles in the cardiac remodeling that occurs in response to cardiac pressure overload. However, the possible roles of T cells in this process, have not been well characterized. Here we show that T cell depletion conferred late-stage heart protection but induced cardioprotective hypertrophy at an early stage of heart failure caused by cardiac pressure overload. Single-cell RNA sequencing analysis revealed that CD8+T cell depletion induced cardioprotective hypertrophy characterized with the expression of mitochondrial genes and growth factor receptor genes. CD8+T cells regulated the conversion of both cardiac-resident macrophages and infiltrated macrophages into cardioprotective macrophages expressing growth factor genes such as Areg, Osm, and Igf1, which have been shown to be essential for the myocardial adaptive response after cardiac pressure overload. Our results demonstrate a dynamic interplay between cardiac CD8+T cells and macrophages that is necessary for adaptation to cardiac stress, highlighting the homeostatic functions of resident and infiltrated macrophages in the heart.


Asunto(s)
Linfocitos T CD8-positivos/fisiología , Insuficiencia Cardíaca/inmunología , Macrófagos/fisiología , Análisis de la Célula Individual/métodos , Animales , Cardiomegalia/etiología , Diferenciación Celular , Modelos Animales de Enfermedad , Macrófagos/citología , Ratones , Ratones Endogámicos C57BL
18.
J Am Soc Nephrol ; 32(7): 1599-1615, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33875568

RESUMEN

BACKGROUND: The sympathetic nervous system regulates immune cell dynamics. However, the detailed role of sympathetic signaling in inflammatory diseases is still unclear because it varies according to the disease situation and responsible cell types. This study focused on identifying the functions of sympathetic signaling in macrophages in LPS-induced sepsis and renal ischemia-reperfusion injury (IRI). METHODS: We performed RNA sequencing of mouse macrophage cell lines to identify the critical gene that mediates the anti-inflammatory effect of ß2-adrenergic receptor (Adrb2) signaling. We also examined the effects of salbutamol (a selective Adrb2 agonist) in LPS-induced systemic inflammation and renal IRI. Macrophage-specific Adrb2 conditional knockout (cKO) mice and the adoptive transfer of salbutamol-treated macrophages were used to assess the involvement of macrophage Adrb2 signaling. RESULTS: In vitro, activation of Adrb2 signaling in macrophages induced the expression of T cell Ig and mucin domain 3 (Tim3), which contributes to anti-inflammatory phenotypic alterations. In vivo, salbutamol administration blocked LPS-induced systemic inflammation and protected against renal IRI; this protection was mitigated in macrophage-specific Adrb2 cKO mice. The adoptive transfer of salbutamol-treated macrophages also protected against renal IRI. Single-cell RNA sequencing revealed that this protection was associated with the accumulation of Tim3-expressing macrophages in the renal tissue. CONCLUSIONS: The activation of Adrb2 signaling in macrophages induces anti-inflammatory phenotypic alterations partially via the induction of Tim3 expression, which blocks LPS-induced systemic inflammation and protects against renal IRI.

19.
Sci Rep ; 11(1): 3426, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33564089

RESUMEN

Most seven transmembrane receptors (7TMRs) are G protein-coupled receptors; however, some 7TMRs evoke intracellular signals through ß-arrestin as a biased receptor. As several ß-arrestin-biased agonists have been reported to be cardioprotective, we examined the role of the chemokine receptor CXCR7 as a ß-arrestin-biased receptor in the heart. Among 510 7TMR genes examined, Cxcr7 was the most abundantly expressed in the murine heart. Single-cell RNA-sequencing analysis revealed that Cxcr7 was abundantly expressed in cardiomyocytes and fibroblasts. Cardiomyocyte-specific Cxcr7 null mice showed more prominent cardiac dilatation and dysfunction than control mice 4 weeks after myocardial infarction. In contrast, there was no difference in cardiac phenotypes between fibroblast-specific Cxcr7-knockout mice and control mice even after myocardial infarction. TC14012, a specific agonist of CXCR7, significantly recruited ß-arrestin to CXCR7 in CXCR7-expressing cells and activated extracellular signal-regulated kinase (ERK) in neonatal rat cardiomyocytes. Cxcr7 expression was significantly increased and ERK was activated in the border zone of the heart in control, but not Cxcr7 null mice. These results indicate that the abundantly expressed CXCR7 in cardiomyocytes may play a protective role in the heart as a ß-arrestin-biased receptor and that CXCR7 may be a novel therapeutic target for myocardial infarction.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Receptores CXCR/metabolismo , beta-Arrestina 1/metabolismo , Animales , Ratones , Ratones Noqueados , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocardio/patología , Miocitos Cardíacos/patología , Oligopéptidos/farmacología , Receptores CXCR/agonistas , Receptores CXCR/genética , beta-Arrestina 1/genética
20.
Nat Commun ; 11(1): 4364, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32868781

RESUMEN

Pathophysiological roles of cardiac dopamine system remain unknown. Here, we show the role of dopamine D1 receptor (D1R)-expressing cardiomyocytes (CMs) in triggering heart failure-associated ventricular arrhythmia. Comprehensive single-cell resolution analysis identifies the presence of D1R-expressing CMs in both heart failure model mice and in heart failure patients with sustained ventricular tachycardia. Overexpression of D1R in CMs disturbs normal calcium handling while CM-specific deletion of D1R ameliorates heart failure-associated ventricular arrhythmia. Thus, cardiac D1R has the potential to become a therapeutic target for preventing heart failure-associated ventricular arrhythmia.


Asunto(s)
Arritmias Cardíacas/etiología , Insuficiencia Cardíaca , Miocitos Cardíacos/metabolismo , Receptores de Dopamina D1/metabolismo , Animales , Arritmias Cardíacas/prevención & control , Perfilación de la Expresión Génica/métodos , Humanos , Ratones , Ratones Transgénicos , Ratas , Receptores de Dopamina D1/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Taquicardia Ventricular/etiología , Taquicardia Ventricular/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA