Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Drug Dev Res ; 85(5): e22240, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39105636

RESUMEN

In an effort to develop new and effective therapeutic agents for Alzheimer's disease, a series of hydrazone derivatives bearing piperidine rings have been designed and synthesized. The chemical structures of the compounds were characterized by various spectroscopic techniques. In vitro antioxidant and cholinesterase activities of the compounds were evaluated. Among the compounds, N12 exhibited the most antioxidant activity in all methods (CUPRAC, FRAP, DPPH, ABTS). In vitro acetylcholinesterase (AChE) activity results of the compounds showed good IC50 values between 14.124 ± 0.084 and 49.680 ± 0.110 µM were obtained (IC50 = 38.842 ± 0.053 µM for Donepezil). Among the compounds, N7 and N6 are much more effective derivatives than the standard compound donepezil with IC50 values of 14.124 ± 0.084 and 17.968 ± 0.072 µM, respectively. In vitro, butyrylcholinesterase (BChE) inhibition values of the compounds were between 13.505 ± 0.025 and 52.230 ± 0.027 µm. Among the compounds, N6 has the highest BChE inhibition with an IC50 value of 13.505 µm in the series. The cytotoxicity and AChE inhibitory activity of the compounds on SH-SY5Y cell lines were also evaluated. Kinetic studies were also performed to determine the behavior of the compounds as competitive or noncompetitive inhibitors. The binding modes of N6, which was determined to be highly effective according to in vitro analyses, with AChE and BChE were investigated using molecular docking studies, and the stability of the complexes was determined by molecular dynamics simulations. These findings indicated that AChE and BChE enzymes maintained their overall structural stability and compactness during interactions with compound N6.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Diseño de Fármacos , Hidrazonas , Simulación del Acoplamiento Molecular , Piperidinas , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Hidrazonas/farmacología , Hidrazonas/síntesis química , Hidrazonas/química , Piperidinas/farmacología , Piperidinas/química , Piperidinas/síntesis química , Butirilcolinesterasa/metabolismo , Acetilcolinesterasa/metabolismo , Humanos , Antioxidantes/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Relación Estructura-Actividad , Modelos Moleculares
2.
Artículo en Inglés | MEDLINE | ID: mdl-38695678

RESUMEN

In this present study, new chalcone derivatives were synthesized from 4-aminoacetophenone, which were confirmed by spectroscopic methods. The toxic risks of chalcones to humans and the environment were investigated by a web-based platform called ADMETlab. With this program, the possible toxic effects of the compounds on liver, respiratory system, and eyes were evaluated. For the topical insecticidal activity, adult female Caribbean fruit fly, Anastrepha suspensa, was targeted. Results of the toxicity tests showed that chalcone derivatives are effective against female A. suspensa. Among the synthesized chalcones, 1-(4-cinnamoylphenyl)-3-(p-tolyl)urea (2) exhibited the greatest insecticidal activity, resulting in 73 % mortality at 100 µg/fly after 24 h, whereas other derivatives showed less than 30 % mortality. Our results demonstrate that insecticidal activity may be modulated by the presence of a certain phenyl ring in the structure of derivative 2 and, therefore, has potential for design of efficient chemicals for tephritid fruit fly management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...