RESUMEN
Exploring novel molecular photoswitches plays a crucial role in the field of photo-functional materials chemistry. In this study, we synthesized aza-diarylethenes with benzothiophene-S,S-dioxide as a part of the hexatriene structure and investigated their photochromic properties. Unlike previously reported aza-diarylethenes, which exhibit fast thermally reversible photochromism, the compounds synthesized here exhibited pseudo-photochemically reversible photochromism. Due to their thermal stability, we successfully isolated the colored isomer. X-ray crystallographic analysis revealed for the first time that the colored isomer adopts a closed-ring structure with a bond between carbon and nitrogen atoms. Remarkably, these aza-diarylethenes exhibited not only photochemical ring-closing and ring-opening reactions but also thermal ring-closing and ring-opening reactions, driven by a thermal equilibrium between the open- and closed-ring isomers. This behavior, unprecedented for common diarylethenes, was elucidated through kinetic analysis, revealing an energy-level diagram for the thermal equilibrium between these isomers. Furthermore, 1Hâ NMR spectroscopy revealed that both photochemically and thermally generated closed-ring isomers adopt the same molecular structure, which was well explained based on the reaction mechanism of photochemical and thermal ring-closing reactions. These findings not only advance the field of aza-diarylethenes but also inspire future research in the development of new photoswitches.
RESUMEN
Understanding physicochemical property changes based on reaction kinetics is required to design materials exhibiting desired functions at arbitrary timings. In this work, we investigated the photodimerization of anthracene derivatives in single crystals. Single crystals of 9-cyanoanthracene (9CA) and 9-anthraldehyde (9AA) exhibited reaction front propagation on the optical length scale, while 9-methylanthracene and 9-acetylanthracene crystals underwent spatially homogeneous conversion. Moreover, the sigmoidal behavior in the absorbance change associated with the reaction was much pronounced in the case of 9CA and 9AA and correlated with the observation of heterogeneous reaction progress. A kinetic analysis based on the Finke-Watzky model showed that the effective quantum yield of the photochemical reaction changes by more than an order of magnitude during the course of the reaction in 9CA and 9AA. Both the reaction front propagation and nonlinear kinetic behavior could be rationalized in terms of the difference in the cooperativity of the reactions. We propose a plausible mechanism for the heterogeneous reaction progress in single crystals that depends on the magnitude of the conformational change required for reaction. Our results provide useful information to understand the connection between photochemical reaction progress in the crystalline phase and the dynamic changes in the physicochemical properties.
RESUMEN
Gaining insight into the dynamics of electrocyclic reactions is very important from both fundamental and application perspectives. In this study, we developed novel diarylethene photoswitches that undergo 6π azaelectrocyclic reaction. We found that they exhibit fast thermally reversible type (T-type) photochromism, in contrast to the fact that common diarylethenes exhibit photochemically reversible type (P-type) photochromism. The quantum chemical calculations revealed that the fast T-type photochromism originates from the unprecedented disrotatory thermal cycloreversion of the closed-ring isomer. Our results provide useful information not only for the dynamics of the 6π azaelectrocyclic reaction but also for the further development of diarylethene photoswitches utilizing the 6π azaelectrocyclic reaction.
RESUMEN
We report the fabrication of hyperbranched hollow crystals of 1,2-bis(2,5-dimethyl-3-thienyl)perfluorocyclopentene on a concave surface of the spherical glass substrate by sublimation and their practical photomechanical behaviors. The number of units of the branched structure of the hollow crystals composed of this compound is proportional to the substrate curvature of the substrate. Compared with the sublimation process of the same compound on the flat glass substrate, two kinds of the thin film domains are generated separately in the center and around the edge of the spherical glass substrate. Especially under the high relative humidity condition, the boundaries between these thin film domains move gradually around the edge through the center during as long as 6â h of sublimation time so that the hyperbranched hollow crystals are densely produced on the entire surface of the substrate. These hyperbranched hollow crystals can be prepared with the highly ordered molecular packing due to the very slow formation process of the crystalline walls of the hollow structures. Furthermore, the photo-induced bending behaviors in the few- and highly-branched hollow crystals have the practical roles in moving and bending the minute objects according to their characteristics of these branched shapes.
RESUMEN
In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures via X-ray diffraction, albeit as the century came to a close the response of molecular crystals to electric, magnetic, and light fields revealed that the physical properties of molecular crystals were as rich as the diversity of molecules themselves. In this century, the mechanical properties of molecular crystals have continued to enhance our understanding of the colligative responses of weakly bound molecules to internal frustration and applied forces. Here, the authors review the main themes of research that have developed in recent decades, prefaced by an overview of the particular considerations that distinguish molecular crystals from traditional materials such as metals and ceramics. Many molecular crystals will deform themselves as they grow under some conditions. Whether they respond to intrinsic stress or external forces or interactions among the fields of growing crystals remains an open question. Photoreactivity in single crystals has been a leading theme in organic solid-state chemistry; however, the focus of research has been traditionally on reaction stereo- and regio-specificity. However, as light-induced chemistry builds stress in crystals anisotropically, all types of motions can be actuated. The correlation between photochemistry and the responses of single crystals-jumping, twisting, fracturing, delaminating, rocking, and rolling-has become a well-defined field of research in its own right: photomechanics. The advancement of our understanding requires theoretical and high-performance computations. Computational crystallography not only supports interpretations of mechanical responses, but predicts the responses itself. This requires the engagement of classical force-field based molecular dynamics simulations, density functional theory-based approaches, and the use of machine learning to divine patterns to which algorithms can be better suited than people. The integration of mechanics with the transport of electrons and photons is considered for practical applications in flexible organic electronics and photonics. Dynamic crystals that respond rapidly and reversibly to heat and light can function as switches and actuators. Progress in identifying efficient shape-shifting crystals is also discussed. Finally, the importance of mechanical properties to milling and tableting of pharmaceuticals in an industry still dominated by active ingredients composed of small molecule crystals is reviewed. A dearth of data on the strength, hardness, Young's modulus, and fracture toughness of molecular crystals underscores the need for refinement of measurement techniques and conceptual tools. The need for benchmark data is emphasized throughout.
RESUMEN
Photoreactive molecular crystals have been intensively investigated as next-generation functional materials. Changes in physicochemical properties are usually interpreted in terms of static pre- and post-reaction molecular structures and packings determined by X-ray structure analysis. However, to elucidate the dynamic properties, it is necessary to understand the dynamic nature of photochemical kinetics in crystals. Reaction dynamics in the crystal phase can be dramatically different from those in dilute solution because the local molecular environment evolves as the surrounding reactant molecules are transformed into products. In this Review article, we summarize multiple examples of photochemical reactions in the crystalline phase that do not follow classical kinetic behavior. We also discuss different theoretical methods that can be used to describe this behavior. This Review article should help provide a foundation for future workers to understand and analyze photochemical reaction kinetics in crystals.
RESUMEN
Photomechanical molecular crystals are promising materials for photon-powered artificial actuators. To interpret the photomechanical responses, the spatiotemporal distribution of photoproducts in crystals could be an important role in addition to molecular structures, molecular packings, illumination conditions, crystal morphology, crystal size, and so on. In this study, we have found that single crystals of 2,5-distyrylpyrazine show a smooth single-crystal-to-single-crystal photomechanical expansion, and the photochemical reaction propagates from the edge to the center of the single crystal. We revealed that the surface effect (special reactivity at the crystal surface) in addition to the cooperative effect (the reaction is facilitated by neighboring molecules) is essential for the edge-to-center propagation of the photochemical reaction. Our results would provide a foundation for future studies of the photochemical reaction dynamics in photomechanical molecular crystals.
RESUMEN
Lithography methods are commonly used to create structures in inorganic semiconductors like silicon but have not been widely applied to organic crystals. In this work, electron beam lithography (EBL) is used to pattern structures into single organic photomechanical crystals composed of 1,2-bis(2-methyl-5-phenyl-3-thienyl)perfluorocyclopentene. The electron beam creates amorphous regions of decomposed molecules, while the reactivity of the unexposed crystal regions is preserved under a removable Au coating. Exposure of the patterned crystal to 365 nm light causes ridges of amorphous material to increase in height by 30-70%. This height increase can be reversed by visible light exposure and undergo multiple cycles. The reversible surface morphology changes are strong enough to rupture a sheet of graphene placed on top of the patterned crystal. Surprisingly, the change in dimensions of the EBL features is an order of magnitude larger than the changes in overall crystal dimensions as deduced from X-ray diffraction experiments and microscopy observations. A dynamic extrusion model is presented to explain how nanoscale features imprinted into single crystals can amplify molecular-level photomechanical changes. This work demonstrates the capability of EBL methods to produce sub-micron structural features on single photomechanical crystals, providing a new route to monolithic light-powered actuator devices.
RESUMEN
Hybrid organic-inorganic composites based on organic photochromic crystals embedded in inorganic templates provide a new approach to photomechanical materials. Diarylethene (DAE) nanowire crystals grown in Al2O3 membranes have exhibited reversible photoinduced bending and lifting [Dong, X., Chem. Mater. 2019, 31, 1016-1022]. In this paper, the hybrid approach is extended to porous SiO2 membranes. Despite the different template material (SiO2 instead of Al2O3) and much larger channels (5 µm diameter instead of 0.2 µm diameter), similar photomechanical behavior is observed for this new class of organic-inorganic hybrid actuators. The ability to reuse individual glass templates across different DAE filling cycles allows us to show that the DAE filling step is crucial for determining the mechanical work done by the bending template. The bending curvature also depends quadratically on the template thickness, in good agreement with theory. The light-induced bending can be repeated for up to 150 cycles without loss of performance, suggesting good fatigue resistance. The results in this paper demonstrate that the hybrid organic-inorganic approach can be extended to other host materials and template geometries. They also suggest that optimizing the organic filling and template thickness could improve the work output by an order of magnitude.
RESUMEN
We have investigated three-dimensional distribution and diffusion behaviors of single guest dyes in 1-µm thick films of poly(2-hydroxyethyl acrylate) (PHEA) by using astigmatism imaging method. Perylene diimide derivative (BP-PDI) in the PHEA films localized along the Z-axis at ca. Z = 600-700 nm distant from the interface (Z = 0) between PHEA and glass substrate. This Z-localization was not observed in different polymer films of poly(methyl methacrylate) (PMMA), poly(methyl acrylate) (PMA), and polystyrene (PSt). Because the glass transition temperature of the PHEA is lower than the room temperature, BP-PDI in the PHEA films exhibited Brownian motion, normal diffusion on the XY plane and confined motion along the Z-direction. For elucidating the mechanism of the peculiar localization of the guest dyes along film thickness in the PHEA films, we measured diffusion behaviors of different dyes, R6G and Atto 488, in 1-µm thick PHEA films, obtaining result that the Z-distributions of the dyes were overall similar to that of BP-PDI. The result indicates that the Z-localization of the guest dyes should be ascribed not to the interaction between glass surface and guest dye but mainly to the Z-dependent property of the PHEA film. Indeed, the lateral diffusion coefficients of the guest dyes depended on their Z-positions.
Asunto(s)
Nanotecnología , Polihidroxietil Metacrilato , Vidrio , Polihidroxietil Metacrilato/análogos & derivados , Polihidroxietil Metacrilato/química , TemperaturaRESUMEN
Photomechanical molecular crystals that expand under illumination could potentially be used as photon-powered actuators. In this study, we find that the use of high-quality single crystals of 9-methylanthracene (9MA) leads to more homogeneous reaction kinetics than that previously seen for polycrystalline samples, presumably due to a lower concentration of defects. Furthermore, simultaneous observation of absorbance and shape changes in single crystals revealed that the dimensional change mirrors the reaction progress, resulting in a smooth expansion of 7 % along the c-axis that is linearly correlated with reaction progress. The same expansion dynamics are highly reproducible across different single crystal samples. Organic single crystals exhibit well-defined linear expansions during 100 % photoconversion, suggesting that this class of solid-state phase change material could be used for actuation.
RESUMEN
The front cover artwork is provided by the groups of Prof. Hiroshi Miyasaka (Osaka University, Japan), Prof. Masahiro Irie (Rikkyo University, Japan), Prof. Seiya Kobatake (Osaka City University, Japan) and Prof. Akira Sakamoto (Aoyama Gakuin University, Japan). The image shows the coherently vibrating closed form of a photochromic diarylethene derivative in the excited state, and subsequent structural evolution into the open form in the cycloreversion reaction. Read the full text of the Article at 10.1002/cphc.202000315.
RESUMEN
Intense ns pulse laser excitation to nanoparticle colloids of a photochromic diarylethene induced an amplified cycloreversion reaction. The mechanism was explained as a 'photosynergetic response' coupled with nanoscale laser heating and the photochemical reaction in nanoparticles.
RESUMEN
The geometrical evolution of the reactant and formation of the photoproduct in the cycloreversion reaction of a diarylethene derivative were probed using time-resolved absorption spectroscopies in the visible to near-infrared and mid-infrared regions. The time-domain vibrational data in the visible region show that the initially formed Franck-Condon state is geometrically relaxed into the minimum in the excited state potential energy surface, concomitantly with the low-frequency coherent vibrations. Theoretical calculations indicate that the nuclear displacement in this coherent vibration is nearly parallel to that in the geometrical relaxation. Time-resolved mid-infrared spectroscopy directly detected the formation of the open-ring isomer with the same time constant as the decrease of the closed-ring isomer in the excited state minimum. This observation reveals that no detectable intermediate, in which the population is accumulated, is present between the excited closed-ring isomer and the open-ring isomer in the ground state.
RESUMEN
Stimuli-responsive organic crystals represent a new frontier of material chemistry. Recently, we have reported photoreversible interference color change to multicolor in single crystals composed of a photochromic diarylethene derivative, 1,2-bis(2-ethyl-5-phenyl-3-thienyl)perfluorocyclopentene (1a), accompanied by the photochromic reaction. The origin of the interference color change is due to the photoinduced birefringence change in the photoisomerization of diarylethenes. In this study, we newly found that single crystals composed of 1,2-bis(2,5-dimethyl-3-thienyl)perfluorocyclopentene (2a) also exhibit a photoreversible interference color change. The birefringence value for crystal 2a increased with the photocyclization conversion, while that for crystal 1a decreased. The relationship between the photoinduced birefringence changes for crystals 1a and 2a and their molecular structures was discussed based on the change in the molecular polarizability anisotropy accompanied by the photochromic reaction. These results would provide not only new opportunities for the application of photochromic crystals but also useful strategies for the design of crystalline materials that exhibit the desired birefringence change.
RESUMEN
1,2-Diarylbenzenes (DABs) have been developed as a new family of fast T-type photochromic switches. However, the molecular design strategy for DABs with desired optical and thermal properties is not established. In this work, we explored the best functional in quantum chemical calculations to predict the properties of DABs. Furthermore, we newly designed and synthesized DABs based on the calculation using the best functional, resulting in the improvement of the photosensitivity in the UV-A region (i.e. a shift of absorption to lower energies and an increase in the absorption coefficient) without changing the thermal back-reaction rate.
RESUMEN
The dark-orange monomer single crystals of 1,1'-dioxo-1H-2,2'-biindene-3,3'-diyldidodecanoate (BIT-dodeca2) convert to a transparent single-crystalline polymer (PBIT-dodeca2) material via a single-crystal-to-single-crystal (SCSC) polymerization reaction under sunlight, which then undergoes reverse thermal transformation into BIT-dodeca2 single crystals, leading to reversible photo-/thermochromism, coupled with mechanical actuation. We exploit the properties of this unique material to demonstrate the formation of monomer-polymer heterostructures in selected regions of single crystals with micrometer-scale precision using a laser. This is the first example of heterostructure patterning involving monomer-polymer domains in single crystals. We reveal that the speed of photomechanical bending induced by the polymerization reaction in this example is comparable to those of the well-known diarylethene derivatives, in which electrocyclic ring-closing-ring-opening reactions operate. Furthermore, we characterize the distinct mechanical properties of the monomer and polymer using a quantitative nanoindentation technique as well as demonstrate photopatterning on a monomer-coated paper for potential use in security devices. These crystals with several advantages, such as photomechanical bending (weight lifting) even when the crystal size is large, responsiveness to both UV and visible light, distinct solubilities (the polymer is insoluble, whereas the monomer is soluble in most organic solvents) and colors, provide unique opportunities for their use at different length scales of the sample (µm to mm) for various purposes.
RESUMEN
Dynamics of the cycloreversion reaction of a photochromic diarylethene derivative with a small ring-opening reaction yield (â¼1%) was investigated by using femtosecond transient absorption spectroscopy. The reaction rate constant and activation barrier on the reaction coordinate were quantitatively analyzed on the basis of the temperature and excitation wavelength dependencies of the reaction yield and excited state dynamics. From the comparison of the present results with those in a more reactive derivative, we concluded that a key factor regulating the overall reaction yield is the branching ratio at the conical intersection where the excited state population is split into the product and the initial reactant. The excitation wavelength dependence of the dynamics indicated that the geometrical relaxation and vibrational cooling proceed in a few picosecond time scale behind the cycloreversion process, and the vibrational excess energy assists the molecule to climb up the energy barrier.
RESUMEN
A highly fluorescent diarylethene single crystal was successfully designed and prepared. The crystal shows efficient "turn-off" fluorescence photoswitching with full reversibility. This might have originated from the amplified fluorescence quenching due to the intermolecular energy transfer process in the densely packed and well-ordered single crystal.
RESUMEN
Photocyclization reaction dynamics of an inverse type diarylethene derivative was investigated in alkane solutions by means of ultrafast laser spectroscopies. Femtosecond transient absorption spectroscopy showed that the Franck-Condon state formed by photoexcitation is geometrically relaxed to a transient species within 100 fs and subsequently the cyclization process takes place with a time constant of 36 ps. This time constant is much longer than those in normal type derivatives. Steady-state and time-resolved fluorescence measurements with the aid of quantum chemical calculations revealed that there exist three kinds of conformers, one parallel and two anti-parallel forms, in the ground state. One of the anti-parallel conformers undergoes the cyclization reaction, while the other two conformers are nonreactive species and their major relaxation processes are radiative decay and intersystem crossing into the triplet states. The triplet states thus formed no longer undergo the cyclization reaction in the late time region.