Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2023): 20232711, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38772420

RESUMEN

In social insect colonies, selfish behaviour due to intracolonial conflict among members can result in colony-level costs despite close relatedness. In certain termite species, queens use asexual reproduction for within-colony queen succession but rely on sexual reproduction for worker and alate production, resulting in multiple half-clones of a single primary queen competing for personal reproduction. Our study demonstrates that competition over asexual queen succession among different clone types leads to the overproduction of parthenogenetic offspring, resulting in the production of dysfunctional parthenogenetic alates. By genotyping the queens of 23 field colonies of Reticulitermes speratus, we found that clone variation in the queen population reduces as colonies develop. Field sampling of alates and primary reproductives of incipient colonies showed that overproduced parthenogenetic offspring develop into alates that have significantly smaller body sizes and much lower survivorship than sexually produced alates. Our results indicate that while the production of earlier and more parthenogenetic eggs is advantageous for winning the competition for personal reproduction, it comes at a great cost to the colony. Thus, this study highlights the evolutionary interplay between individual-level and colony-level selection on parthenogenesis by queens.


Asunto(s)
Isópteros , Partenogénesis , Animales , Isópteros/fisiología , Isópteros/genética , Femenino , Reproducción , Conducta Social
2.
Chem Pharm Bull (Tokyo) ; 72(3): 309-310, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38479891

RESUMEN

The inhibition mode of a retro-inverso (RI) inhibitor containing a hydroxyethylamine dipeptide isostere against the human T-cell leukemia virus type-1 (HTLV-1) protease was examined. Enzymatic evaluation of the RI-modified inhibitor containing a D-allo-Ile residue revealed that HTLV-1 was competitively inhibited. IC50 values of the RI-modified inhibitor and pepstatin A, a standard inhibitor of aspartic proteases, were nearly equivalent.


Asunto(s)
Ácido Aspártico Endopeptidasas , Virus Linfotrópico T Tipo 1 Humano , Humanos , Secuencia de Aminoácidos , Ácido Aspártico Endopeptidasas/química , Ácido Aspártico Endopeptidasas/metabolismo , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Dipéptidos , Inhibidores de Proteasas/farmacología
4.
Langmuir ; 40(9): 4635-4645, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38377565

RESUMEN

Quartz is ubiquitous in subsurface formations. The crystal faces have different atomic arrangements. Knowledge of the molecular structures on the surface of quartz is key in many processes. Molecular dynamics simulations are conducted to investigate the atomic arrangement effect on the water film structure, ion adsorption, and wettability at three different α-quartz surfaces. The interfacial structures depend on the quartz surface. Intrasurface hydrogen bonding between surface silanols differs in the α-quartz surface. At the (0001) surface, the OH density is 9.58 nm-2, consisting of Q2 units with two hydroxyl groups per silicone atom. At the (101̅0)-ß surface, the OH density is 7.54 nm-2, consisting of Q3 units with one hydroxyl group per silicone atom; there is significant intrasurface hydrogen bonding. At the (101̅0)-α surface, the OH density is 7.54 nm-2, consisting of Q2 units; however, there is little intrasurface hydrogen bonding. The intrasurface hydrogen bonding results in the exposure of hydrogen-bond acceptors to the aqueous phase, causing water molecules to have an H-up (hydrogen toward surface) orientation. This orientation can be found at the (0001) and (101̅0)-ß surfaces; it is related to the degree of ordering at the surface. The ordering at the (0001) and (101̅0)-ß surfaces is higher than that at the (101̅0)-α surface. In aqueous systems with ions, cation adsorption is the most dominant at the (0001) surface due to the largest surface density of the intrasurface hydrogen bonding, providing interaction sites for cations to be adsorbed. We observe a pronounced decrease in water film thickness from the ions at the (0001) surface only, likely due to significant cation adsorption. In this work, we demonstrate that the hydrogen-bond network, which varies from the plane cut, affects the water film structure and ion adsorption. The contact is nearly zero despite the changes in the film thickness and molecular structure at the temperature of 318 K.

5.
J Gen Appl Microbiol ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38281752

RESUMEN

To enhance the value of surimi, efforts have been made to develop a fermentation method with lactic acid bacteria (LAB) to proteolyze fish protein. However, fermenting unheated surimi poses a spoilage risk due to its high bacterial content. Surimi heat treatment can prevent spoilage, but gel formation induced by heating introduces another technical issue: it hinders uniform fermentation. Thus, this study aims to observe the proteolysis and enhance the functionality of seafood product through lactic acid fermentation of kamaboko, a heated surimi. Upon analyzing the kamaboko fermented with Lactobacillus helveticus JCM1004, we observed that LAB produced protease, resulting in the degradation of myosin heavy chain and actin during fermentation. Lactic acid fermentation significantly augmented the peptide content of kamaboko, subsequently elevating the angiotensin Ⅰ-converting enzyme (ACE) inhibitory activity in 200-fold diluted extract of fermented kamaboko to approximately 70% and higher. Notably, our investigation revealed that proteolysis was confined to the surface of kamaboko, as evidenced by SDS-PAGE analysis. This observation implies that the surface area of kamaboko influences the ACE inhibitory activity. Through a comparative analysis of various bacterial strains, we demonstrated that the increase in ACE inhibitory activity is contingent on the protease generated by LAB. These results suggest that LAB-mediated proteolysis of fish proteins liberates bioactive peptides, thereby manifesting in the ACE inhibitory activity. In summary, this study underscores that the fermentation of kamaboko employing proteolytic LAB holds promise in the development of novel functional seafood products.

6.
Biotechnol Prog ; 40(2): e3420, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38146091

RESUMEN

Virus filtration is one of the most important steps in ensuring viral safety during the purification of monoclonal antibodies (mAbs) and other biotherapeutics derived from mammalian cell cultures. Regarding the various virus retentive filters, including Planova filters, a great deal of data has been reported on the virus retention capability and its mechanism. Along with the virus retention capability, filterability is a key performance indicator for designing a robust and high-throughput virus filtration step. In order to obtain higher filterability, optimization of the feed solution conditions, and filter selection is essential; however, limited data are available regarding the filtration characteristics of Planova filters. Furthermore, for Planova 20N and Planova BioEX, the virus retention characteristics were reported to differ due to their respective membrane materials and layer structures. Whether these filters differ in their filtration characteristics is an interesting question, but no comparative evaluations have been reported. In this study, the filterability of the two filters was investigated and compared using 15 feed mAb solutions of a single mAb selected by design of experiments with different combinations of pH, NaCl concentration, and mAb concentration. The filterability of Planova 20N was affected not only by the feed solution viscosity, but also by the mAb aggregate content of the feed mAb solution and mAb-membrane electrostatic interactions. In contrast, the filterability of Planova BioEX decreased under some buffer conditions. These findings and the established design spaces of these filters provide valuable insights into the process optimization of virus filtration.


Asunto(s)
Cloruro de Sodio , Virus , Animales , Filtración , Anticuerpos Monoclonales , Concentración de Iones de Hidrógeno , Mamíferos
8.
PNAS Nexus ; 2(11): pgad393, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38024406

RESUMEN

Most compounds of some 1,000 amu molecular weight (MW) and higher are poorly soluble in carbon dioxide (CO2). Only at very high pressure, there may be mild solubility. This limits the use of CO2 as a solvent and modifications of CO2 properties through additives. We have developed a coarse-grained molecular model to investigate the dependency of the solubility of hydrocarbon oligomers (MW of ∼1,000 amu) in CO2 and on the molecular structure. The coarse-grained model is optimized by the particle swarm optimization algorithm to reproduce density, surface tension, and enthalpy of vaporization of a highly branched hydrocarbon oligomer (poly-1-decene with six repeating units). We demonstrate that branching in molecular structure of oligomers significantly increases solubility in CO2. The branching in molecular structure results in up to 270-time enhancement of solubility in CO2 than an n-alkane with the same MW. The number of structural edges (methyl group) is a key in improved CO2-philicity. The solubility of poly-1-decene with nine repeating units (MW of 1,264.4 amu) is higher in CO2 than poly-1-dodecene with six repeating units (MW of 1,011.93 amu) because it has more structural edges (10 vs. 7). These results shed light on the enhancement of CO2-philicity by altering molecular structure rather than modifying chemical composition in compounds.

9.
ACS Med Chem Lett ; 14(10): 1344-1350, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37849553

RESUMEN

A marine cyanobacterial cyclic depsipeptide, coibamide A (CbA), inhibits the mammalian protein secretory pathway by blocking the Sec61 translocon, which is an emerging drug target for cancer and other chronic diseases. In our previous structure-activity relationship study of CbA, the macrolactone ester linker was replaced with alkyl/alkenyl surrogates to provide synthetically accessible macrocyclic scaffolds. To optimize the cellular bioactivity profile of CbA analogues, novel lysine mimetics having ß- and ε-methyl groups have now been designed and synthesized by a stereoselective route. A significant increase in cytotoxicity was observed upon introduction of these two methyl groups, corresponding to the d-MeAla α-methyl and MeThr ß-methyl of CbA. All synthetic products retained the ability to inhibit secretion of a model Sec61 substrate. Tandem evaluation of secretory function inhibition in living cells and cytotoxicity was an effective strategy to assess the impact of structural modifications to the linker for ring closure.

10.
iScience ; 26(1): 105776, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36594009

RESUMEN

Various parasitic flatworms infect vertebrates for sexual reproduction, often causing devastating diseases in their hosts. Consequently, flatworms are of great socioeconomic and biomedical importance. Although the cessation of parasitic flatworm sexual reproduction is a major target of anti-parasitic drug design, little is known regarding bioactive compounds controlling flatworm sexual maturation. Using the planarian Dugesia ryukyuensis, we observed that sex-inducing substances found in planarians are also widespread in parasitic flatworms, such as monogeneans and flukes (but not in tapeworms). Reverse-phase HPLC analysis revealed the sex-inducing substance(s) eluting around the tryptophan retention time in the fluke Calicophoron calicophorum, consistent with previous studies on the planarian Bipalium nobile, suggesting that the substance(s) is likely conserved among flatworms. Moreover, six of the 18 ovary-inducing substances identified via transcriptome and metabolome analyses are involved in purine metabolism. Our findings provide a basis for understanding and modifying the life cycles of various parasitic flatworms.

11.
J Phys Chem B ; 126(41): 8300-8308, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36197719

RESUMEN

Mutual solubilities of hydrocarbon-CO2 systems are important in a broad range of applications. Experimental data and theoretical understanding of phase behavior of large hydrocarbon molecules and CO2 are limited. This is especially true in relation to the molecular structure of hydrocarbons when the carbon number exceeds 12. In this work, the continuous fractional component Gibbs ensemble Monte Carlo simulations are used to investigate mutual solubility of different alkane and CO2 systems and the molecular structure. We investigate the mutual solubility of n-decane, n-hexadecane, n-eicosane, and the corresponding structural isomers in the CO2-rich and hydrocarbon-rich phase. The focus will be solubility of the heavy normal alkanes and their structural isomers in CO2. The simulation results are verified by comparing the experimental data when measurements are available. The simulation of phase behavior of the n-decane-CO2 system agrees with the experiments. We also present simulation results of n-hexadecane-CO2 and n-eicosane-CO2 systems away from the critical region partly due to the finite size effect. We establish that solubility of the hydrocarbons in CO2 is improved by change of the molecular structure in heavier alkanes. The enhanced solubility is limited in decane isomers, but the isomers of hexadecane and eicosane show 2- to 3-time solubility enhancement. The molecular dynamics simulations suggest that the improvement is from a higher coordination number of CO2 for methyl (CH3) rather than for methylene (CH2) groups. This study sets the stage for molecular engineering and synthesis of hydrocarbons that are soluble in CO2 not only by considering functionality but also by changing the molecular structure. The solubility enhancement is the first step in viscosification of CO2 which broadens the use of CO2.

12.
Sci Rep ; 12(1): 6290, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428754

RESUMEN

We study gravitationally-driven (Rayleigh-Taylor-like) instability in physical gels as a model for the behavior of granular media falling under gravity; physical gels have a structural elasticity and may be fluidized, capturing both the solid and liquid properties of granular systems. Though ubiquitous in both industrial and natural contexts, the unique static and dynamic properties of granular media remain poorly understood. Under the action of a gravitational force, granular materials may flow while exhibiting heterogeneous rigidity, as seen during e.g., avalanches or landslides. Though the onset of this gravitational "instability" has been addressed, the mechanism behind its incidence is not yet understood. We find key quantitative similarities between Rayleigh-Taylor-like instability in physical gels and granular systems. In particular, we identify a common scaling law, showing that the instability is chiefly governed by the thickness of the flowable region.

13.
Molecules ; 27(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35268749

RESUMEN

In this study, the effects of side-chain configurations of D-Ile residues of a retro-inverso (RI)-type inhibitor on the human T-cell leukemia virus type 1 (HTLV-1) protease containing a hydroxyethylamine dipeptide isostere were clarified. Prior to evaluation using the RI-type inhibitor, the effects of side-chain configurations of Ile residues of the substrate peptide on the HTLV-1 protease were examined to estimate the influence of side-chain configurations on enzyme activity. Based on the estimation of the influence of side-chain configurations on protease affinity, the RI-type inhibitors containing a D-allo-Ile residue in the corresponding substrate sequence, instead of a D-Ile residue, were synthesized via 9-fluorenylmethoxycarbonyl-based solid-phase peptide synthesis. Refolded recombinant HTLV-1 protease (1-116, L40I) was used for the simple and short evaluation of the inhibitory activities of the synthesized RI-type inhibitors. The results clearly indicated that mimicking the whole topology, comprising both the main- and side-chain structures of the parent inhibitor, is effective for the design of potent RI-modified protease inhibitors.


Asunto(s)
Péptido Hidrolasas
14.
Zoolog Sci ; 38(6): 544-557, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34854286

RESUMEN

Sexually mature planarians produce sex-inducing substances that induce postembryonic development of hermaphroditic reproductive organs in asexual freshwater planarians. Although the sex-inducing substances may be useful for elucidating the mechanism underlying this reproductive switch, the available information is limited. The potency of sex-inducing activity is conserved, at least at the order level. Recently, we showed that the sex-inducing activity in the land planarian Bipalium nobile was much higher than that in freshwater planarians. In the present study, we performed bioassay-guided fractionation of the sex-inducing substances produced by B. nobile and propose that crucial sex-inducing activity that triggers complete sexualization for asexual worms of the freshwater planarian Dugesia ryukyuensis is produced by additive and/or synergetic effects of various sex-inducing substances involved in ovarian development. The current study provided an isolation scheme for the minimum-required combination of sex-inducing substances for producing crucial sex-inducing activity.


Asunto(s)
Planarias , Animales , Bioensayo , Agua Dulce , Extractos Vegetales , Reproducción Asexuada
15.
Bioorg Med Chem ; 52: 116517, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34800875

RESUMEN

Based on the X-ray crystallography of recombinant BACE1 and a hydroxyethylamine-type peptidic inhibitor, we introduced a cross-linked structure between the P1 and P3 side chains of the inhibitor to enhance its inhibitory activity. The P1 and P3 fragments bearing terminal alkenes were synthesized, and a ring-closing metathesis of these alkenes was used to construct the cross-linked structure. Evaluation of ring size using P1 and P3 fragments with various side chain lengths revealed that 13-membered rings were optimal, although their activity was reduced compared to that of the parent compound. Furthermore, the optimal ring structure was found to be a macrocycle with a dimethyl branched substituent at the P3 ß-position, which was approximately 100-fold more active than the non-substituted macrocycle. In addition, the introduction of a 4-carboxymethylphenyl group at the P1' position further improved the activity.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Reactivos de Enlaces Cruzados/farmacología , Etilaminas/farmacología , Compuestos Macrocíclicos/farmacología , Péptidos/farmacología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Reactivos de Enlaces Cruzados/síntesis química , Reactivos de Enlaces Cruzados/química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Etilaminas/síntesis química , Etilaminas/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/química , Modelos Moleculares , Estructura Molecular , Péptidos/síntesis química , Péptidos/química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
16.
Bioorg Med Chem ; 50: 116459, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34700240

RESUMEN

An aromatic substituent has been introduced into a known hydroxyethylamine (HEA)-type BACE1 inhibitor containing the superior substrate sequence to enhance inhibitory activity. The HEA-type isosteres bearing different hydroxyl group and methyl group configurations were prepared through a branched synthesis approach using intra- and inter-molecular epoxide opening reactions. The effect of their configuration was evaluated, showing that an R-configuration improved the inhibitory activity, while introduction of a methyl group on the isostere decreased the activity. Based on the non-substituted isostere with an R-configuration, 21 derivatives containing various substituents at the P1' site were synthesized. Our evaluation of the derivatives showed that the structure of the P1' site had a clear effect on activity, and highly potent inhibitor 40g, which showed sub-micromolar activity against recombinant BACE1 (rBACE1), was identified. The docking simulation of 40g with rBACE1 suggested that a carboxymethyl group at the para-position of the P1' benzene ring interacted with Lys285 in the S1' pocket.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Etilaminas/farmacología , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Etilaminas/síntesis química , Etilaminas/química , Humanos , Estructura Molecular , Proteínas Recombinantes , Relación Estructura-Actividad
17.
Cell Tissue Res ; 386(2): 391-413, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34319433

RESUMEN

All animals, other than Platyhelminthes, produce eggs containing yolk, referred to as "entolecithal" eggs. However, only Neoophora, in the phylum Platyhelminthes, produce "ectolecithal" eggs (egg capsules), in which yolk is stored in the vitelline cells surrounding oocytes. Vitelline cells are derived from vitellaria (yolk glands). Vitellaria are important reproductive organs that may be studied to elucidate unique mechanisms that have been evolutionarily conserved within Platyhelminthes. Currently, only limited molecular level information is available on vitellaria. The current study identified major vitellaria-specific proteins in a freshwater planarian, Dugesia ryukyuensis, using peptide mass fingerprinting (PMF) and expression analyses. Amino acid sequence analysis and orthology analysis via OrthoFinder ver.2.3.8 indicated that the identified major vitellaria-specific novel yolk ferritins were conserved in planarians (Tricladida). Because ferritins play an important role in Fe (iron) storage, we examined the metal elements contained in vitellaria and ectolecithal eggs, using non-heme iron histochemistry, elemental analysis based on inductively coupled plasma mass spectrometry and transmission electron microscopy- energy-dispersive X-ray spectroscopy analysis. Interestingly, vitellaria and egg capsules contained large amounts of aluminum (Al), but not Fe. The knockdown of the yolk ferritin genes caused a decrease in the volume of egg capsules, abnormality in juveniles, and increase in Al content in vitellaria. Yolk ferritins of D. ryukyuensis may regulate Al concentration in vitellaria via their pooling function of Al and protect the egg capsule production and normal embryogenesis from Al toxicity.


Asunto(s)
Aluminio/metabolismo , Proteínas del Huevo/metabolismo , Ferritinas/metabolismo , Proteínas del Helminto/metabolismo , Hierro/metabolismo , Planarias/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas del Huevo/análisis , Proteínas del Huevo/genética , Ferritinas/análisis , Ferritinas/genética , Proteínas del Helminto/análisis , Proteínas del Helminto/genética , Óvulo/crecimiento & desarrollo , Óvulo/metabolismo , Planarias/genética , Planarias/crecimiento & desarrollo
18.
Nat Commun ; 12(1): 2232, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33854051

RESUMEN

Post-operative adhesions are a leading cause of abdominal surgery-associated morbidity. Exposed fibrin clots on the damaged peritoneum, in which the mesothelial barrier is disrupted, readily adhere to surrounding tissues, resulting in adhesion formation. Here we show that resident F4/80HighCD206- peritoneal macrophages promptly accumulate on the lesion and form a 'macrophage barrier' to shield fibrin clots in place of the lost mesothelium in mice. Depletion of this macrophage subset or blockage of CD11b impairs the macrophage barrier and exacerbates adhesions. The macrophage barrier is usually insufficient to fully preclude the adhesion formation; however, it could be augmented by IL-4-based treatment or adoptive transfer of this macrophage subset, resulting in robust prevention of adhesions. By contrast, monocyte-derived recruited peritoneal macrophages are not involved in the macrophage barrier. These results highlight a previously unidentified cell barrier function of a specific macrophage subset, also proposing an innovative approach to prevent post-operative adhesions.


Asunto(s)
Macrófagos Peritoneales/inmunología , Peritoneo/inmunología , Complicaciones Posoperatorias/inmunología , Adherencias Tisulares/inmunología , Animales , Antígeno CD11b/genética , Antígeno CD11b/inmunología , Epitelio/inmunología , Epitelio/patología , Humanos , Interleucina-4 , Masculino , Ratones , Ratones Endogámicos C57BL , Peritoneo/patología , Complicaciones Posoperatorias/genética , Complicaciones Posoperatorias/patología , Adherencias Tisulares/genética , Adherencias Tisulares/patología
19.
Mol Ther ; 29(8): 2554-2570, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-33887461

RESUMEN

Mesenchymal stromal cell (MSC) transplantation has been investigated as an advanced treatment of heart failure; however, further improvement of the therapeutic efficacy and mechanistic understanding are needed. Our previous study has reported that epicardial placement of fibrin sealant films incorporating rat amniotic membrane-derived (AM)-MSCs (MSC-dressings) could address limitations of traditional transplantation methods. To progress this finding toward clinical translation, this current study aimed to examine the efficacy of MSC-dressings using human AM-MSCs (hAM-MSCs) and the underpinning mechanism for myocardial repair. Echocardiography demonstrated that cardiac function and structure were improved in a rat ischemic cardiomyopathy model after hAM-MSC-dressing therapy. hAM-MSCs survived well in the rat heart, enhanced myocardial expression of reparative genes, and attenuated adverse remodeling. Copy number analysis by qPCR revealed that upregulated reparative genes originated from endogenous rat cells rather than hAM-MSCs. These results suggest hAM-MSC-dressing therapy stimulates a secondary release of paracrine factors from endogenous cells improving myocardial repair ("secondary paracrine effect"), and cardiac M2-like macrophages were identified as a potential cell source of repair. We demonstrated hAM-MSCs increased M2-like macrophages through not only enhancing M2 polarization but also augmenting their proliferation and migration capabilities via PGE2, CCL2, and TGF-ß1, resulting in enhanced cardiac function after injury.


Asunto(s)
Fibrina/química , Insuficiencia Cardíaca/terapia , Macrófagos/citología , Células Madre Mesenquimatosas/citología , Animales , Polaridad Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Ecocardiografía , Femenino , Regulación de la Expresión Génica , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/genética , Humanos , Macrófagos/química , Trasplante de Células Madre Mesenquimatosas , Ratones , Ratas
20.
Zoological Lett ; 7(1): 4, 2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33743841

RESUMEN

BACKGROUND: Many animals switch between asexual and sexual reproduction in nature. We previously established a system for the sexual induction of planarian Dugesia ryukyuensis by feeding asexual planarians with minced sexual planarians. We identified DL-tryptophan (Trp) as one of the sex-inducing substances. DL-Trp can induce ovarian development, the first and essential step of sexual induction. D-Trp must act as a principal bioactive compound in terms of ovarian development, because the ovary-inducing activity of D-Trp was 500 times more potent than that of L-Trp. However, how Trp controls sexual induction is still unknown. RESULTS: In this study, qRT-PCR analyses suggested that the putative amino acid transporter gene Dr-SLC38A9 is highly expressed in sexual worms, especially in the yolk glands. In situ hybridization analyses showed that Dr-SLC38A9 is expressed in the ovarian primordia of asexual worms and in the mature ovaries, testes, and yolk glands of sexual worms. In addition, Dr-SLC38A9 RNA interference during sexual induction resulted in the suppression of the development of reproductive organs. These results suggest that Dr-SLC38A9 is involved in the development of these organs. Moreover, we demonstrated that the reproductive organ-specific expression of Dr-SLC38A9 is enhanced by the addition of D-Trp. CONCLUSION: We propose that D-Trp activates the expression of Dr-SLC38A9 to promote sexual induction in the planarian D. ryukyuensis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...