RESUMEN
Advances in genome sequencing have greatly accelerated the identification of sex chromosomes in a variety of species. Many of these species have experienced structural rearrangements that reduce recombination between the sex chromosomes, allowing the accumulation of sequence differences over many megabases. Identification of the genes that are responsible for sex determination within these sometimes large regions has proved difficult. Here, we identify an XY sex chromosome system on LG19 in the West African cichlid fish Chromidotilapia guntheri in which the region of differentiation extends over less than 400 kb. We develop high-quality male and female genome assemblies for this species, which confirm the absence of structural variants, and which facilitate the annotation of genes in the region. The peak of differentiation lies within rin3, which has experienced several debilitating mutations on the Y chromosome. We suggest two hypotheses about how these mutations might disrupt endocytosis, leading to Mendelian effects on sexual development.
RESUMEN
(Adaptive) radiations have attracted evolutionary biologists for a long time as ideal model systems to study patterns and processes of often rapid speciation. However, whereas a wealth of (sometimes already genome-scale) data is available for host radiations, very few studies target the patterns of diversification in their symbionts, even though they would be excellent models to study symbiont speciation. Our review summarizes what little is known about general patterns of symbiont diversification in often iconic adaptive host radiations and to what extent these patterns are dependent on the evolutionary trajectories of their hosts. We identify research gaps that need to be addressed in the future and discuss the potential of approaches not yet typically used in these study systems, such as epidemiological disease modeling and new omics technologies, for significantly advancing our understanding of these complex eco-evolutionary relationships.
RESUMEN
Understanding the processes that drive phenotypic diversification and underpin speciation is key to elucidating how biodiversity has evolved. Although these processes have been studied across a wide array of clades, adaptive radiations (ARs), which are systems with multiple closely related species and broad phenotypic diversity, have been particularly fruitful for teasing apart the factors that drive and constrain diversification. As such, ARs have become popular candidate study systems for determining the extent to which ecological features, including aspects of organisms and the environment, and inter- and intraspecific interactions, led to evolutionary diversification. Despite substantial past empirical and theoretical work, understanding mechanistically how ARs evolve remains a major challenge. Here, we highlight a number of understudied components of the environment and of lineages themselves, which may help further our understanding of speciation and AR. We also outline some substantial remaining challenges to achieving a detailed understanding of adaptation, speciation, and the role of ecology in these processes. These major challenges include identifying factors that have a causative impact in promoting or constraining ARs, gaining a more holistic understanding of features of organisms and their environment that interact resulting in adaptation and speciation, and understanding whether the role of these organismal and environmental features varies throughout the radiation process. We conclude by providing perspectives on how future investigations into the AR process can overcome these challenges, allowing us to glean mechanistic insights into adaptation and speciation.
RESUMEN
Situated in the Eastern section of the European Alps, Austria encompasses a great diversity of different habitat types, ranging from alpine to lowland Pannonian ecosystems, and a correspondingly high level of species diversity, some of which has been addressed in various DNA barcoding projects. Here, we report a DNA barcode library of all the 476 species of Geometridae (Lepidoptera) that have been recorded in Austria. As far as possible, species were sampled from different Austrian regions in order to capture intraspecific genetic variation. In total, 2500 DNA barcode sequences, representing 438 species, were generated in this study. For complete coverage of Austrian geometrid species in the subsequent analyses, the dataset was supplemented with DNA barcodes from specimens of non-Austrian origin. Species delimitations by ASAP, BIN and bPTP methods yielded 465, 510 and 948 molecular operational taxonomic units, respectively. Congruency of BIN and ASAP partitions with morphospecies assignments was reasonably high (85% of morphospecies in unique partitions), whereas bPTP appeared to overestimate the number of taxonomic units. The study furthermore identified taxonomically relevant cases of morphospecies splitting and sharing in the molecular partitions. We conclude that DNA barcoding and sequence analysis revealed a high potential for accurate DNA-based identification of the Austrian Geometridae species. Additionally, the study provides an updated checklist of the geometrid moths of Austria.
Asunto(s)
Lepidópteros , Mariposas Nocturnas , Animales , Lepidópteros/genética , Código de Barras del ADN Taxonómico/métodos , Austria , Ecosistema , Biodiversidad , Mariposas Nocturnas/genética , ADNRESUMEN
Sex chromosome replacement is frequent in many vertebrate clades, including fish, frogs, and lizards. In order to understand the mechanisms responsible for sex chromosome turnover and the early stages of sex chromosome divergence, it is necessary to study lineages with recently evolved sex chromosomes. Here we examine sex chromosome evolution in a group of African cichlid fishes (tribe Tropheini) which began to diverge from one another less than 4 MYA. We have evidence for a previously unknown sex chromosome system, and preliminary indications of several additional systems not previously reported in this group. We find a high frequency of sex chromosome turnover and estimate a minimum of 14 turnovers in this tribe. We date the origin of the most common sex determining system in this tribe (XY-LG5/19) near the base of one of two major sub-clades of this tribe, about 3.4 MY ago. Finally, we observe variation in the size of one sex-determining region that suggests independent evolution of evolutionary strata in species with a shared sex-determination system. Our results illuminate the rapid rate of sex chromosome turnover in the tribe Tropheini and set the stage for further studies of the dynamics of sex chromosome evolution in this group.
Asunto(s)
Cíclidos , Animales , Cíclidos/genética , Lagos , Tanzanía , Filogenia , ADN Mitocondrial/genética , Cromosomas Sexuales/genética , Evolución MolecularRESUMEN
Phlebotomine sand flies (Diptera: Phlebotominae) are the principal vectors of Leishmania spp. (Kinetoplastida: Trypanosomatidae). In Central Europe, Phlebotomus mascittii is the predominant species, but largely understudied. To better understand factors driving its current distribution, we infer patterns of genetic diversity by testing for signals of population expansion based on two mitochondrial genes and model current and past climate and habitat suitability for seven post-glacial maximum periods, taking 19 climatic variables into account. Consequently, we elucidate their connections by environmental-geographical network analysis. Most analyzed populations share a main haplotype tracing back to a single glacial maximum refuge area on the Mediterranean coasts of South France, which is supported by network analysis. The rapid range expansion of Ph. mascittii likely started in the early mid-Holocene epoch until today and its spread possibly followed two routes. The first one was through northern France to Germany and then Belgium, and the second across the Ligurian coast through present-day Slovenia to Austria, toward the northern Balkans. Here we present a combined approach to reveal glacial refugia and post-glacial spread of Ph. mascittii and observed discrepancies between the modelled and the current known distribution might reveal yet overlooked populations and potential further spread.
Asunto(s)
Leishmania , Phlebotomus , Psychodidae , Animales , Phlebotomus/genética , Insectos Vectores/genética , Europa (Continente)RESUMEN
Host-parasite dynamics involve coevolutionary arms races, which may lead to host specialization and ensuing diversification. Our general understanding of the evolution of host specialization in brood parasites is compromised by a restricted focus on bird and insect lineages. The cuckoo catfish (Synodontis multipunctatus) is an obligate parasite of parental care of mouthbrooding cichlids in Lake Tanganyika. Given the ecological and taxonomic diversity of mouthbrooding cichlids in the lake, we hypothesized the existence of sympatric host-specific lineages in the cuckoo catfish. In a sample of 779 broods from 20 cichlid species, we found four species parasitized by cuckoo catfish (with prevalence of parasitism of 2%-18%). All parasitized cichlids were from the tribe Tropheini, maternal mouthbrooders that spawn over a substrate (rather than in open water). Phylogenetic analysis based on genomic (ddRAD sequencing) and mitochondrial (Dloop) data from cuckoo catfish embryos showed an absence of host-specific lineages. This was corroborated by analyses of genetic structure and co-ancestry matrix. Within host species, parasitism was not associated with any individual characteristic we recorded (parent size, water depth), but was costly as parasitized parents carried smaller clutches of their own offspring. We conclude that the cuckoo catfish is an intermediate generalist and discuss costs, benefits and constraints of host specialization in this species and brood parasites in general.
Asunto(s)
Bagres , Cíclidos , Parásitos , Animales , Bagres/genética , Cíclidos/genética , Interacciones Huésped-Parásitos/genética , Comportamiento de Nidificación , Filogenia , AguaRESUMEN
Gravel beaches in the Mediterranean ecoregion represent an economically important and unique habitat type. Yet, burgeoning tourism, intensive coastal development and artificial nourishment of beaches may jeopardize their ecological communities. To date, species that reside on gravel beaches and the consequences of beach alterations are poorly understood, which hampers the development of a sustainable coastal tourism industry along the region's shorelines. Using a simple collection method based on dredging buckets through the intertidal section of beaches, we quantified the microhabitat association of two sympatric clingfish species in the genus Gouania at seven natural and an artificial gravel beach based on sediment characteristics. We hypothesized that slender (G. pigra) and stout (G. adriatica) morphotypes would partition interstitial niche space based on sediment size, which may affect the vulnerability of the species to changes in gravel beach composition due to coastal development. We detected substantial differences in gravel composition within and among the sampled beaches which suggests scope for microhabitat partitioning in Gouania. Indeed, we found significant relationships between species identity and the presence/absence and abundance of individuals in hauls based on their positioning on PC1. Our results suggest that modifications of gravel beaches through coastal development, including beach nourishment, intensifying coastal erosion, or artificial beach creation, may have detrimental consequences for the two species if sediment types or sizes are altered. We posit that, given the simplicity and efficacy of our sampling method and the sensitivity of Gouania species to prevailing gravel composition, the genus could serve as an important indicator for gravel beach management in the Mediterranean ecoregion.
RESUMEN
Polystomatidae is a monogenean family whose representatives infect mainly (semi)-aquatic tetrapods. Species of Sphyranura Wright, 1879 exhibit ectoparasitism on salamander hosts, with molecular work supporting their inclusion within Polystomatidae, at an early diverging, yet unresolved, position in the clade of otherwise endoparasitic polystomatid parasites of batrachian hosts. Records of representatives of Sphyranura are scarce with genetic data only available for S. oligorchis Alvey, 1933. Based on detailed morphological examination and comparison with type material, we identified worms belonging to Sphyranura infecting Oklahoma salamander (Eurycea tynerensis) as S. euryceae Hughes & Moore, 1943. Along with an amended diagnosis of Sphyranura, we provide the first molecular data for S. euryceae in the form of a mitochondrial genome and nuclear (18S, 28S rRNA) markers. Close morphological similarity between the two species of Sphyranura is reflected in low genetic divergence. Mitochondrial level comparison reveals instances of tRNA gene rearrangements in polystomatids. Although the phylogenetic reconstruction supports Sphyranura as early branching in the lineage of polystomatid monogeneans infecting batrachians, certain nodes remain unresolved.
Title: Diagnostic modifié, génome mitochondrial et position phylogénétique de Sphyranura euryceae (Neodermata, Monogenea, Polystomatidae), un parasite de la salamandre de l'Oklahoma. Abstract: Les Polystomatidae sont une famille de monogènes dont les représentants infectent principalement les tétrapodes (semi)-aquatiques. Les espèces de Sphyranura Wright, 1879 présentent un ectoparasitisme sur les hôtes salamandres, et des travaux moléculaires soutiennent leur inclusion dans les Polystomatidae, à une position divergente précoce mais non résolue dans le clade des Polystomatidae endoparasites d'hôtes batraciens. Les signalements des représentants de Sphyranura sont rares et les données génétiques ne sont disponibles que pour S. oligorchis Alvey, 1933. Sur la base d'un examen morphologique détaillé et d'une comparaison avec le matériel type, nous avons identifié les vers appartenant à Sphyranura infectant la salamandre de l'Oklahoma (Eurycea tynerensis) comme S. euryceae Hughes & Moore, 1943. Parallèlement à un diagnostic modifié de Sphyranura, nous fournissons les premières données moléculaires pour S. euryceae sous la forme d'un génome mitochondrial et de marqueurs nucléaires (ARNr 18S, 28S). La similitude morphologique étroite entre les deux espèces de Sphyranura se traduit par une faible divergence génétique. La comparaison au niveau mitochondrial révèle des cas de réarrangements des gènes des ARNt chez les Polystomatidae. Bien que la reconstruction phylogénétique soutienne Sphyranura comme un rameau précoce dans la lignée des monogènes Polystomatidae infectant les batraciens, certains nÅuds restent non résolus.
Asunto(s)
Genoma Mitocondrial , Parásitos , Trematodos , Animales , Filogenia , Parásitos/genética , Urodelos/genética , OklahomaRESUMEN
Sex determining loci have been described on at least 12 of 22 chromosomes in East African cichlid fishes, indicating a high rate of sex chromosome turnover. To better understand the rates and patterns of sex chromosome replacement, we used new methods to characterize the sex chromosomes of the cichlid tribe Cyprichromini from Lake Tanganyika. Our k-mer based methods successfully identified sex-linked polymorphisms without the need for a reference genome. We confirm the three previously reported sex chromosomes in this group. We determined the polarity of the sex chromosome turnover on LG05 in Cyprichromis as ZW to XY. We identified a new ZW locus on LG04 in Paracyprichromis brieni. The LG15 XY locus in Paracyprichromis nigripinnis was not found in other Paracyprichromis species, and the sample of Paracyprichromis sp. "tembwe" is likely to be of hybrid origin. Although highly divergent sex chromosomes are thought to develop in a stepwise manner, we show two cases (LG05-ZW and LG05-XY) in which the region of differentiation encompasses most of the chromosome, but appears to have arisen in a single step. This study expands our understanding of sex chromosome evolution in the Cyprichromini, and indicates an even higher level of sex chromosome turnover than previously thought.
Asunto(s)
Cíclidos , Cromosomas Sexuales , Animales , Cíclidos/genética , Lagos , Cromosomas Sexuales/genética , TanzaníaRESUMEN
Cichlid fishes of the tribe Tropheini are a striking case of adaptive radiation, exemplifying multiple trophic transitions between herbivory and carnivory occurring in sympatry with other established cichlid lineages. Tropheini evolved highly specialized eco-morphologies to exploit similar trophic niches in different ways repeatedly and rapidly. To better understand the evolutionary history and trophic adaptations of this lineage, we generated a dataset of 532 targeted loci from 21 out of the 22 described Tropheini species. We resolved the Tropheini into seven monophyletic genera and discovered one to be polyphyletic. The polyphyletic genus, Petrochromis, represents three convergent origins of the algae grazing trophic specialization. This repeated evolution of grazing may have been facilitated by adaptive introgression as we found evidence for gene flow among algae grazing genera. We also found evidence of gene flow among algae browsing genera, but gene flow was restricted between herbivorous and carnivorous genera. Furthermore, we observed no evidence supporting a hybrid origin of this radiation. Our molecular evolutionary analyses suggest that opsin genes likely evolved in response to selection pressures associated with trophic ecology in the Tropheini. We found surprisingly little evidence of positive selection in coding regions of jaw-shaping genes in this trophically diverse lineage. This suggests low degrees of freedom for further change in these genes, and possibly a larger role for regulatory variation in driving jaw adaptations. Our study emphasizes Tropheini cichlids as an important model for studying the evolution of trophic specialization and its role in speciation.
RESUMEN
Austria is inhabited by more than 80 species of native and non-native freshwater fishes. Despite considerable knowledge about Austrian fish species, the latest Red List of threatened species dates back 15 years and a systematic genetic inventory of Austria's fish species does not exist. To fulfill this deficit, we employed DNA barcoding to generate an up-to-date and comprehensive genetic reference database for Austrian fish species. In total, 639 newly generated cytochrome c oxidase subunit 1 (COI) sequences were added to the 377 existing records from the BOLD data base, to compile a near complete reference dataset. Standard sequence similarity analyses resulted in 83 distinct clusters almost perfectly reflecting the expected number of species in Austria. Mean intraspecific distances of 0.22% were significantly lower than distances to closest relatives, resulting in a pronounced barcoding gap and unique Barcode Index Numbers (BINs) for most of the species. Four cases of BIN sharing were detected, pointing to hybridization and/or recent divergence, whereas in Phoxinus spp., Gobio spp. and Barbatula barbatula intraspecific splits, multiple BINs and consequently cryptic diversity were observed. The overall high identification success and clear genetic separation of most of the species confirms the applicability and accuracy of genetic methods for bio-surveillance. Furthermore, the new DNA barcoding data pinpoints cases of taxonomic uncertainty, which need to be addressed in further detail, to more precisely assort genetic lineages and their local distribution ranges in a new National Red-List.
Asunto(s)
Código de Barras del ADN Taxonómico , Peces , Animales , Austria , ADN/genética , Código de Barras del ADN Taxonómico/métodos , Peces/genética , Agua Dulce , FilogeniaRESUMEN
Many species-rich ecological communities emerge from adaptive radiation events. Yet the effects of adaptive radiation on community assembly remain poorly understood. Here, we explore the well-documented radiations of African cichlid fishes and their interactions with the flatworm gill parasites Cichlidogyrus spp., including 10,529 reported infections and 477 different host-parasite combinations collected through a survey of peer-reviewed literature. We assess how evolutionary, ecological, and morphological parameters determine host-parasite meta-communities affected by adaptive radiation events through network metrics, host repertoire measures, and network link prediction. The hosts' evolutionary history mostly determined host repertoires of the parasites. Ecological and evolutionary parameters predicted host-parasite interactions. Generally, ecological opportunity and fitting have shaped cichlid-Cichlidogyrus meta-communities suggesting an invasive potential for hosts used in aquaculture. Meta-communities affected by adaptive radiations are increasingly specialised with higher environmental stability. These trends should be verified across other systems to infer generalities in the evolution of species-rich host-parasite networks.
Asunto(s)
Cíclidos , Sustancias Explosivas , Parásitos , Platelmintos , Trematodos , Animales , Filogenia , Platelmintos/anatomía & histologíaRESUMEN
Different scenarios explaining the emergence of novel variants of concern (VOC) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported, including their evolution in scarcely monitored populations, in animals as alternative hosts, or in immunocompromised individuals. Here we report SARS-CoV-2 immune escape mutations over a period of seven months in an immunocompromised patient with prolonged viral shedding. Signs of infection, viral shedding and mutation events are periodically analyzed using RT-PCR and next-generation sequencing based on naso-pharyngeal swabs, with the results complemented by immunological diagnostics to determine humoral and T cell immune responses. Throughout the infection course, 17 non-synonymous intra-host mutations are noted, with 15 (88.2%) having been previously described as prominent immune escape mutations (S:E484K, S:D950N, S:P681H, S:N501Y, S:del(9), N:S235F and S:H655Y) in VOCs. The high frequency of these non-synonymous mutations is consistent with multiple events of convergent evolution. Thus, our results suggest that specific mutations in the SARS-CoV-2 genome may represent positions with a fitness advantage, and may serve as targets in future vaccine and therapeutics development for COVID-19.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Huésped Inmunocomprometido , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genéticaRESUMEN
African cichlid fishes harbor an extraordinary diversity of sex-chromosome systems. Within just one lineage, the tribe Haplochromini, at least 6 unique sex-chromosome systems have been identified. Here we focus on characterizing sex chromosomes in cichlids from the Lake Victoria basin. In Haplochromis chilotes, we identified a new ZW system associated with the white blotch color pattern, which shows substantial sequence differentiation over most of LG16, and is likely to be present in related species. In Haplochromis sauvagei, we found a coding polymorphism in amh that may be responsible for an XY system on LG23. In Pundamilia nyererei, we identified a feminizing effect of B chromosomes together with XY- and ZW-patterned differentiation on LG23. In Haplochromis latifasciatus, we identified a duplication of amh that may be present in other species of the Lake Victoria superflock. We further characterized the LG5-14 XY system in Astatotilapia burtoni and identified the oldest stratum on LG14. This species also showed ZW differentiation on LG2. Finally, we characterized an XY system on LG7 in Astatoreochromis alluaudi. This report brings the number of distinct sex-chromosome systems in haplochromine cichlids to at least 13, and highlights the dynamic evolution of sex determination and sex chromosomes in this young lineage.
Asunto(s)
Cíclidos , Animales , Cíclidos/genética , Lagos , Polimorfismo Genético , Cromosomas Sexuales/genética , Análisis para Determinación del SexoRESUMEN
A substantial portion of biodiversity has evolved through adaptive radiation. However, the effects of explosive speciation on species interactions remain poorly understood. Metazoan parasites infecting radiating host lineages could improve our knowledge because of their intimate host relationships. Yet limited molecular, phenotypic and ecological data discourage multivariate analyses of evolutionary patterns and encourage the use of discrete characters. Here, we assemble new molecular, morphological and host range data widely inferred from a species-rich lineage of parasites (Cichlidogyrus, Platyhelminthes: Monogenea) infecting cichlid fishes to address data scarcity. We infer a multimarker (28S/18S rDNA, ITS1, COI mtDNA) phylogeny of 58 of 137 species and characterize major lineages through synapomorphies inferred from mapping morphological characters. We predict the phylogenetic position of species without DNA data through shared character states, a morphological phylogenetic analysis, and a classification analysis with support vector machines. Based on these predictions and a cluster analysis, we assess the systematic informativeness of continuous characters, search for continuous equivalents for discrete characters, and suggest new characters for morphological traits not analysed to date. We also model the attachment/reproductive organ and host range evolution using the data for 136 of 137 described species and multivariate phylogenetic comparative methods (PCMs). We show that discrete characters not only can mask phylogenetic signals, but also are key for characterizing species groups. Regarding the attachment organ morphology, a divergent evolutionary regime for at least one lineage was detected and a limited morphological variation indicates host and environmental parameters affecting its evolution. However, moderate success in predicting phylogenetic positions, and a low systematic informativeness and high multicollinearity of morphological characters call for a revaluation of characters included in species characterizations.
Asunto(s)
Cíclidos , Platelmintos , Trematodos , Animales , Cíclidos/genética , ADN Ribosómico/genética , Filogenia , Platelmintos/genéticaRESUMEN
Cichlidogyrus (including Scutogyrus) is the most speciose dactylogyridean monogenean genus known from African and Levantine cichlid fishes (Cichlidae). While its taxonomy is well established, little is known about the phylogenetic relationships and evolutionary history of this ectoparasite, especially from hosts belonging to one of the most impressive vertebrate radiations, the cichlid fishes from the East African Great Lakes and surrounding hydrological systems. Phylogenetic inference based on DNA sequences of the nuclear 18S, internal transcribed spacer 1 and 28S rDNA genes revealed that Cichlidogyrus parasitizing mainly West African cichlid tribes is paraphyletic with respect to species parasitizing hosts belonging to the East African cichlid radiation, which constitute a well-supported monophylum. Members of Cichlidogyrus from tylochromine and oreochromine hosts that colonised Lake Tanganyika only recently, cluster with their non-Lake Tanganyika relatives, indicating that they colonised Lake Tanganyika with their current host species, and did not jump over from any of the many cichlid species already present in the lake. The diversification of Cichlidogyrus in Lake Tanganyika seems to be driven by failure to diverge in old lineages of cichlids, cospeciation in more recently evolved ones, and host switching followed by parasite duplication at the level of the various host tribes. Evaluation of host specificity and structural evolution of haptoral and reproductive organs in Lake Tanganyika Cichlidogyrus revealed that strict specialist species together with larval hook size represent the ancestral state of haptor configuration, suggesting that members of Cichlidogyrus in this system evolved from a very simple form to a more complex one similarly to their West African congeners. Generalist species among Cichlidogyrus with a sclerotized vagina parasitizing ancient Lake Tanganyika lineages seem to have developed a different hook configuration, most probably to ensure successful colonisation of new, phylogenetically unrelated hosts.
Asunto(s)
Cíclidos , Trematodos , Animales , Cíclidos/parasitología , Femenino , Lagos/parasitología , Filogenia , Tanzanía , Trematodos/genéticaRESUMEN
Since its outbreak in 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) keeps surprising the medical community by evolving diverse immune escape mutations in a rapid and effective manner. To gain deeper insight into mutation frequency and dynamics, we isolated ten ancestral strains of SARS-CoV-2 and performed consecutive serial incubation in ten replications in a suitable and common cell line and subsequently analysed them using RT-qPCR and whole genome sequencing. Along those lines we hoped to gain fundamental insights into the evolutionary capacity of SARS-CoV-2 in vitro. Our results identified a series of adaptive genetic changes, ranging from unique convergent substitutional mutations and hitherto undescribed insertions. The region coding for spike proved to be a mutational hotspot, evolving a number of mutational changes including the already known substitutions at positions S:484 and S:501. We discussed the evolution of all specific adaptations as well as possible reasons for the seemingly inhomogeneous potential of SARS-CoV-2 in the adaptation to cell culture. The combination of serial passage in vitro with whole genome sequencing uncovers the immense mutational potential of some SARS-CoV-2 strains. The observed genetic changes of SARS-CoV-2 in vitro could not be explained solely by selectively neutral mutations but possibly resulted from the action of directional selection accumulating favourable genetic changes in the evolving variants, along the path of increasing potency of the strain. Competition among a high number of quasi-species in the SARS-CoV-2 in vitro population gene pool may reinforce directional selection and boost the speed of evolutionary change.
Asunto(s)
COVID-19 , SARS-CoV-2 , Genoma Viral , Humanos , Mutación , Filogenia , SARS-CoV-2/genética , Pase Seriado , Glicoproteína de la Espiga del Coronavirus , Secuenciación Completa del GenomaRESUMEN
Cuckoo wasps (Chrysididae, Hymenoptera) are known for their parasitoid or cleptoparasitic life histories. Indeed, the biology of only a few species has been studied in detail and often only little more is known than the host species. By mimicking their hosts' cuticular hydrocarbon (CHC) profiles, species that parasitize single (or a few closely related) host species manage to deceive their hosts. However, the variability of the CHC profile in generalist cuckoo-wasp species is still unknown. Here, we used gas chromatography-mass spectrometry (GC-MS) and DNA barcoding to study intraspecific variation in cuticular hydrocarbons of one less host-specific species of cuckoo wasps, Trichrysis cyanea. Cuticular hydrocarbon (CHC) patterns were found to differ between males and females. Additionally, we found chemical polymorphism among females, which formed three distinct chemical subgroups characterized by different alkene patterns. A lack of divergence in the DNA barcoding region suggests that these different chemotypes do not represent cryptic species. Whether this intrasexual CHC-profile variation is an adaptation (mimicry) to different host species, or simply signaling the reproductive status, remains unclear.
RESUMEN
Knowledge of the level and duration of protective immunity against SARS-CoV-2 after primary infection is of crucial importance for preventive approaches. Currently, there is a lack of evidence on the persistence of specific antibodies. We investigated the generation and maintenance of neutralizing antibodies of convalescent SARS-CoV-2-afflicted patients over a ten-month period post-primary infection using an immunofluorescence assay, a commercial chemiluminescent immunoassay and an in-house enzyme-linked neutralization assay. We present the successful application of an improved version of the plaque-reduction neutralization assay which can be analysed optometrically to simplify data interpretation. Based on the results of the enzyme-linked neutralization assay, neutralizing antibodies were maintained in 77.4% of convalescent individuals without relevant decay over ten months. Furthermore, a positive correlation between severity of infection and antibody titre was observed. In conclusion, SARS-CoV-2-afflicted individuals have been proven to be able to develop and maintain neutralizing antibodies over a period of ten months after primary infection. Findings suggest long-lasting presumably protective humoral immune responses after wild-type infection.