Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38496444

RESUMEN

A quarter of human population is infected with Mycobacterium tuberculosis, but less than 10% of those infected develop clinical, mostly pulmonary, TB. To dissect mechanisms of susceptibility in immunocompetent individuals, we developed a genetically defined sst1-susceptible mouse model that uniquely reproduces a defining feature of human TB: development of necrotic lung lesions after infection with virulent Mtb. In this study, we explored the connectivity of the sst1-regulated pathways during prolonged macrophage activation with TNF. We determined that the aberrant response of the sst1-susceptible macrophages to TNF was primarily driven by conflicting Myc and antioxidant response pathways that resulted in a coordinated failure to properly sequester intracellular iron and activate ferroptosis inhibitor enzymes. Consequently, iron-mediated lipid peroxidation fueled IFNß superinduction and sustained the Type I Interferon (IFN-I) pathway hyperactivity that locked the sst1-susceptible macrophages in a state of unresolving stress and compromised their resistance to Mtb. The accumulation of the aberrantly activated, stressed, macrophages within granuloma microenvironment led to the local failure of anti-tuberculosis immunity and tissue necrosis. Our findings suggest a novel link between metabolic dysregulation in macrophages and susceptibility to TB, offering insights into potential therapeutic targets aimed at modulating macrophage function and improving TB control.

2.
medRxiv ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38076828

RESUMEN

Vertebrates differ greatly in responses to pro-inflammatory agonists such as bacterial lipopolysaccharide (LPS), complicating use of animal models to study human sepsis or inflammatory disorders. We compared transcriptomes of resting and LPS-exposed blood from six LPS-sensitive species (rabbit, pig, sheep, cow, chimpanzee, human) and four LPS-resilient species (mice, rats, baboon, rhesus), as well as plasma proteomes and lipidomes. Unexpectedly, at baseline, sensitive species already had enhanced expression of LPS-responsive genes relative to resilient species. After LPS stimulation, maximally different genes in resilient species included genes that detoxify LPS, diminish bacterial growth, discriminate sepsis from SIRS, and play roles in autophagy and apoptosis. The findings reveal the molecular landscape of species differences in inflammation, and may inform better selection of species for pre-clinical models.

4.
J Neuroinflammation ; 19(1): 118, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35610647

RESUMEN

BACKGROUND: The transient receptor potential vanilloid 1 (TRPV1) participates in thermosensation and inflammatory pain, but its immunomodulatory mechanisms remain enigmatic. N-Oleoyl dopamine (OLDA), an endovanilloid and endocannabinoid, is a TRPV1 agonist that is produced in the central nervous system and the peripheral nervous system. We studied the anti-inflammatory effects and TRPV1-dependent mechanisms of OLDA in models of inflammation and sepsis. METHODS: Mice were challenged intratracheally or intravenously with LPS, or intratracheally with S. aureus to induce pneumonia and sepsis, and then were treated intravenously with OLDA. Endpoints included plasma cytokines, leukocyte activation marker expression, mouse sepsis scores, lung histopathology, and bacterial counts. The role of TRPV1 in the effects of OLDA was determined using Trpv1-/- mice, and mice with TRPV1 knockdown pan-neuronally, in peripheral nervous system neurons, or in myeloid cells. Circulating monocytes/macrophages were depleted using clodronate to determine their role in the anti-inflammatory effects of OLDA in endotoxemic mice. Levels of exogenous OLDA, and of endovanilloids and endocannabinoids, at baseline and in endotoxemic mice, were determined by LC-MS/MS. RESULTS: OLDA administration caused an early anti-inflammatory response in endotoxemic and septic mice with high serum levels of IL-10 and decreased levels of pro-inflammatory cytokines. OLDA also reduced lung injury and improved mouse sepsis scores. Blood and lung bacterial counts were comparable between OLDA- and carrier-treated mice with S. aureus pneumonia. OLDA's effects were reversed in mice with pan-neuronal TRPV1 knockdown, but not with TRPV1 knockdown in peripheral nervous system neurons or myeloid cells. Depletion of monocytes/macrophages reversed the IL-10 upregulation by OLDA in endotoxemic mice. Brain and blood levels of endovanilloids and endocannabinoids were increased in endotoxemic mice. CONCLUSIONS: OLDA has strong anti-inflammatory actions in mice with endotoxemia or S. aureus pneumonia. Prior studies focused on the role of peripheral nervous system TRPV1 in modulating inflammation and pneumonia. Our results suggest that TRPV1-expressing central nervous system neurons also regulate inflammatory responses to endotoxemia and infection. Our study reveals a neuro-immune reflex that during acute inflammation is engaged proximally by OLDA acting on neuronal TRPV1, and through a multicellular network that requires circulating monocytes/macrophages, leads to the systemic production of IL-10.


Asunto(s)
Endotoxemia , Sepsis , Animales , Sistema Nervioso Central/metabolismo , Cromatografía Liquida , Citocinas/metabolismo , Dopamina/metabolismo , Endocannabinoides , Endotoxemia/inducido químicamente , Endotoxemia/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-10/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Sepsis/tratamiento farmacológico , Staphylococcus aureus , Canales Catiónicos TRPV/metabolismo , Espectrometría de Masas en Tándem
5.
Sci Adv ; 7(34)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34407940

RESUMEN

Novel coronavirus disease 2019 (COVID-19) severity is highly variable, with pediatric patients typically experiencing less severe infection than adults and especially the elderly. The basis for this difference is unclear. We find that mRNA and protein expression of angiotensin-converting enzyme 2 (ACE2), the cell entry receptor for the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19, increases with advancing age in distal lung epithelial cells. However, in humans, ACE2 expression exhibits high levels of intra- and interindividual heterogeneity. Further, cells infected with SARS-CoV-2 experience endoplasmic reticulum stress, triggering an unfolded protein response and caspase-mediated apoptosis, a natural host defense system that halts virion production. Apoptosis of infected cells can be selectively induced by treatment with apoptosis-modulating BH3 mimetic drugs. Notably, epithelial cells within young lungs and airways are more primed to undergo apoptosis than those in adults, which may naturally hinder virion production and support milder COVID-19 severity.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , Apoptosis/genética , COVID-19/genética , Perfilación de la Expresión Génica/métodos , Factores de Edad , Anciano , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/metabolismo , COVID-19/virología , Células Cultivadas , Chlorocebus aethiops , Femenino , Humanos , Lactante , Pulmón/citología , Pulmón/metabolismo , Pulmón/virología , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Células Vero , Internalización del Virus
6.
iScience ; 24(8): 102845, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34381970

RESUMEN

Macrophages contribute to host immunity and tissue homeostasis via alternative activation programs. M1-like macrophages control intracellular bacterial pathogens and tumor progression. In contrast, M2-like macrophages shape reparative microenvironments that can be conducive for pathogen survival or tumor growth. An imbalance of these macrophages phenotypes may perpetuate sites of chronic unresolved inflammation, such as infectious granulomas and solid tumors. We have found that plant-derived and synthetic rocaglates sensitize macrophages to low concentrations of the M1-inducing cytokine IFN-gamma and inhibit their responsiveness to IL-4, a prototypical activator of the M2-like phenotype. Treatment of primary macrophages with rocaglates enhanced phagosome-lysosome fusion and control of intracellular mycobacteria. Thus, rocaglates represent a novel class of immunomodulators that can direct macrophage polarization toward the M1-like phenotype in complex microenvironments associated with hypofunction of type 1 and/or hyperactivation of type 2 immunity, e.g., chronic bacterial infections, allergies, and, possibly, certain tumors.

7.
J Clin Invest ; 131(3)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33301427

RESUMEN

The mechanism by which only some individuals infected with Mycobacterium tuberculosis develop necrotic granulomas with progressive disease while others form controlled granulomas that contain the infection remains poorly defined. Mice carrying the sst1-suscepible (sst1S) genotype develop necrotic inflammatory lung lesions, similar to human tuberculosis (TB) granulomas, which are linked to macrophage dysfunction, while their congenic counterpart (B6) mice do not. In this study we report that (a) sst1S macrophages developed aberrant, biphasic responses to TNF characterized by superinduction of stress and type I interferon pathways after prolonged TNF stimulation; (b) the late-stage TNF response was driven via a JNK/IFN-ß/protein kinase R (PKR) circuit; and (c) induced the integrated stress response (ISR) via PKR-mediated eIF2α phosphorylation and the subsequent hyperinduction of ATF3 and ISR-target genes Chac1, Trib3, and Ddit4. The administration of ISRIB, a small-molecule inhibitor of the ISR, blocked the development of necrosis in lung granulomas of M. tuberculosis-infected sst1S mice and concomitantly reduced the bacterial burden. Hence, induction of the ISR and the locked-in state of escalating stress driven by the type I IFN pathway in sst1S macrophages play a causal role in the development of necrosis in TB granulomas. Interruption of the aberrant stress response with inhibitors such as ISRIB may offer novel host-directed therapy strategies.


Asunto(s)
Granuloma del Sistema Respiratorio/inmunología , Pulmón/inmunología , Mycobacterium tuberculosis/inmunología , Estrés Fisiológico/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Modelos Animales de Enfermedad , Granuloma del Sistema Respiratorio/microbiología , Granuloma del Sistema Respiratorio/patología , Pulmón/microbiología , Pulmón/patología , Ratones , Ratones SCID , Necrosis , Tuberculosis Pulmonar/patología
8.
bioRxiv ; 2020 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-32935109

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) maintains cardiovascular and renal homeostasis but also serves as the entry receptor for the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), the causal agent of novel coronavirus disease 2019 (COVID-19). COVID-19 disease severity is typically lower in pediatric patients than adults (particularly the elderly), but higher rates of hospitalizations requiring intensive care are observed in infants than in older children - the reasons for these differences are unknown. ACE2 is expressed in several adult tissues and cells, including alveolar type 2 cells of the distal lung epithelium, but expression at other ages is largely unexplored. Here we show that ACE2 transcripts are expressed in the lung and trachea shortly after birth, downregulated during childhood, and again expressed at high levels in late adulthood. Notably, the repertoire of cells expressing ACE2 protein in the mouse lung and airways shifts during key phases of lung maturation. In particular, podoplanin-positive cells, which are likely alveolar type I cells responsible for gas exchange, express ACE2 only in advanced age. Similar patterns of expression were evident in analysis of human lung tissue from over 100 donors, along with extreme inter- and intra-individual heterogeneity in ACE2 protein expression in epithelial cells. Furthermore, we find that apoptosis, which is a natural host defense system against viral infection, is dynamically regulated during lung maturation, resulting in periods of heightened apoptotic priming and dependence on pro-survival BCL-2 family proteins including MCL-1. Infection of human lung cells with SARS-CoV-2 triggers an unfolded protein stress response and upregulation of the endogenous MCL-1 inhibitor Noxa; in young individuals, MCL-1 inhibition is sufficient to trigger apoptosis in lung epithelial cells and may thus limit virion production and inflammatory signaling. Overall, we identify strong and distinct correlates of COVID-19 disease severity across lifespan and advance our understanding of the regulation of ACE2 and cell death programs in the mammalian lung. Furthermore, our work provides the framework for translation of apoptosis modulating drugs as novel treatments for COVID-19.

9.
FEBS Lett ; 594(17): 2782-2799, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32484234

RESUMEN

Intracellular pathogens affect diverse host cellular defence and metabolic pathways. Here, we used infection with Francisella tularensis to identify SON DNA-binding protein as a central determinant of macrophage activities. RNAi knockdown of SON increases survival of human macrophages following F. tularensis infection or inflammasome stimulation. SON is required for macrophage autophagy, interferon response factor 3 expression, type I interferon response and inflammasome-associated readouts. SON knockdown has gene- and stimulus-specific effects on inflammatory gene expression. SON is required for accurate splicing and expression of GBF1, a key mediator of cis-Golgi structure and function. Chemical GBF1 inhibition has similar effects to SON knockdown, suggesting that SON controls macrophage functions at least in part by controlling Golgi-associated processes.


Asunto(s)
Autofagia/genética , Proteínas de Unión al ADN/genética , Francisella tularensis/patogenicidad , Aparato de Golgi/inmunología , Factores de Intercambio de Guanina Nucleótido/genética , Interacciones Huésped-Patógeno/genética , Macrófagos/inmunología , Antígenos de Histocompatibilidad Menor/genética , Autofagia/efectos de los fármacos , Muerte Celular , Diferenciación Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/inmunología , Francisella tularensis/genética , Francisella tularensis/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Aparato de Golgi/metabolismo , Aparato de Golgi/microbiología , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Inflamasomas/inmunología , Inflamasomas/metabolismo , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Antígenos de Histocompatibilidad Menor/inmunología , Piridinas/farmacología , Quinolinas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Células THP-1 , Acetato de Tetradecanoilforbol/farmacología
10.
J Immunol ; 204(12): 3339-3350, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32385136

RESUMEN

Cannabis sativa and its principal components, Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol, are increasingly being used to treat a variety of medical problems, including inflammatory conditions. Although studies suggest that the endocannabinoid system has immunomodulatory properties, there remains a paucity of information on the effects of cannabinoids on immunity and on outcomes of infection and injury. We investigated the effects and mechanism(s) of action of cannabinoid receptor agonists, including Δ9-THC, on inflammation and organ injury in endotoxemic mice. Administration of Δ9-THC caused a dramatic early upregulation of plasma IL-10 levels, reduced plasma IL-6 and CCL-2 levels, led to better clinical status, and attenuated organ injury in endotoxemic mice. The anti-inflammatory effects of Δ9-THC in endotoxemic mice were reversed by a cannabinoid receptor type 1 (CB1R) inverse agonist (SR141716), and by clodronate-induced myeloid-cell depletion, but not by genetic invalidation or blockade of other putative Δ9-THC receptors, including cannabinoid receptor type 2, TRPV1, GPR18, GPR55, and GPR119. Although Δ9-THC administration reduced the activation of several spleen immune cell subsets, the anti-inflammatory effects of Δ9-THC were preserved in splenectomized endotoxemic mice. Finally, using IL-10-GFP reporter mice, we showed that blood monocytic myeloid-derived suppressive cells mediate the Δ9-THC-induced early rise in circulating IL-10. These results indicate that Δ9-THC potently induces IL-10, while reducing proinflammatory cytokines, chemokines, and related organ injury in endotoxemic mice via the activation of CB1R. These data have implications for acute and chronic conditions that are driven by dysregulated inflammation, such as sepsis, and raise the possibility that CB1R-signaling may constitute a novel target for inflammatory disorders.


Asunto(s)
Secreciones Corporales/metabolismo , Inflamación/metabolismo , Interleucina-10/metabolismo , Lipopolisacáridos/farmacología , Monocitos/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Receptor Cannabinoide CB1/metabolismo , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Cannabinoides/farmacología , Citocinas/metabolismo , Dronabinol/farmacología , Endocannabinoides/farmacología , Femenino , Inflamación/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/efectos de los fármacos , Células Supresoras de Origen Mieloide/efectos de los fármacos , Receptores de Cannabinoides/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Bazo/efectos de los fármacos , Bazo/metabolismo
11.
J Infect Dis ; 220(9): 1498-1502, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31287867

RESUMEN

Therapy to enhance host immune defenses may improve outcomes in serious infections, especially for antibiotic-resistant pathogens. Recombinant human plasma gelsolin (rhu-pGSN), a normally circulating protein, has beneficial effects in diverse preclinical models of inflammation and injury. We evaluated delayed therapy (24-48 hours after challenge) with rhu-pGSN in a mouse model of pneumococcal pneumonia. rhu-pGSN without antibiotics increased survival and reduced morbidity and weight loss after infection with either penicillin-susceptible or penicillin-resistant pneumococci (serotypes 3 and 14, respectively). rhu-pGSN improves outcomes in a highly lethal pneumococcal pneumonia model when given after a clinically relevant delay, even in the setting of antimicrobial resistance.


Asunto(s)
Gelsolina/administración & dosificación , Factores Inmunológicos/administración & dosificación , Neumonía Neumocócica/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Neumonía Neumocócica/patología , Proteínas Recombinantes/administración & dosificación , Análisis de Supervivencia , Resultado del Tratamiento , Pérdida de Peso
12.
Nanomedicine ; 18: 234-242, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30904585

RESUMEN

Infectious diseases represent a major public health challenge worldwide. There are various modes for the transmission of these diseases, with surface and airborne transmission being two of the most important ones. The inefficiencies of current intervention methods have resulted in the emergence of nosocomial infections. Here, we report the use of a nanotechnology based antimicrobial platform using Engineered Water Nanostructures (EWNS) generated using a combined electrospray and ionization of an aqueous suspension of various active ingredients (AIs). These EWNS based nano-sanitizers were tested in terms of their ability to efficiently deliver AI and inactivate Acinetobacter baumannii and influenza H1N1/PR/8 on both surfaces and air. Results indicate a significant reduction in the concertation of the pathogens, while the delivered to pathogen AI doses required for inactivation were miniscule (nanogram level), indicating the viability of such nano-carrier platform as an intervention technology against infectious microorganisms.


Asunto(s)
Antiinfecciosos/farmacología , Hospitales , Viabilidad Microbiana/efectos de los fármacos , Nanoestructuras/química , Nanotecnología , Agua , Aire , Propiedades de Superficie
13.
F1000Res ; 8: 1860, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824672

RESUMEN

Background: Host-derived inflammatory responses contribute to the morbidity and mortality of severe influenza, suggesting that immunomodulatory therapy may improve outcomes. The normally circulating protein, human plasma gelsolin, is available in recombinant form (rhu-pGSN) and has beneficial effects in a variety of pre-clinical models of inflammation and injury.   Methods: We evaluated delayed therapy with subcutaneous rhu-pGSN initiated 3 to 6 days after intra-nasal viral challenge in a mouse model of influenza A/PR/8/34. Results: Rhu-pGSN administered starting on day 3 or day 6 increased survival (12-day survival: 62 % vs 39 %, pGSN vs vehicle; p < 0.00001, summary of 18 trials), reduced morbidity, and decreased pro-inflammatory gene expression. Conclusions: Rhu-pGSN improves outcomes in a highly lethal influenza model when given after a clinically relevant delay.


Asunto(s)
Gelsolina , Gripe Humana , Proteínas Recombinantes , Animales , Modelos Animales de Enfermedad , Gelsolina/uso terapéutico , Humanos , Inflamación , Gripe Humana/tratamiento farmacológico , Ratones , Proteínas Recombinantes/uso terapéutico , Análisis de Supervivencia
14.
Mol Cancer Res ; 17(1): 250-262, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30237296

RESUMEN

Deregulated expression of the transcriptional coactivator with PDZ-binding motif (WWTR1/TAZ) is a common feature of basal-like breast cancer (BLBC). Yet, how oncogenic TAZ regulates cell-cycle progression and proliferation in breast cancer remains poorly understood, and whether TAZ is required for tumor maintenance has not been established. Here, using an integrative oncogenomic approach, TAZ-dependent cellular programs essential for tumor growth and progression were identified. Significantly, TAZ-driven tumor cells required sustained TAZ expression, given that its withdrawal impaired both genesis and maintenance of solid tumors. Moreover, temporal inhibition of TAZ diminished the metastatic burden in established macroscopic pulmonary metastases. Mechanistic investigation revealed that TAZ controls distinct gene profiles that determine cancer cell fate through cell-cycle networks, including a specific, causal role for S-phase kinase-associated protein 2 (SKP2) in mediating the neoplastic state. Together, this study elucidates the molecular events that underpin the role of TAZ in BLBC and link to SKP2, a convergent communication node for multiple cancer signaling pathways, as a key downstream effector molecule. IMPLICATIONS: Understanding the molecular role of TAZ and its link to SKP2, a signaling convergent point and key regulator in BLBC, represents an important step toward the identification of novel therapeutic targets for TAZ-dependent breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Proteínas Quinasas Asociadas a Fase-S/antagonistas & inhibidores , Transactivadores/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Doxiciclina/farmacología , Femenino , Xenoinjertos , Humanos , Ratones , Ratones SCID , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Transducción de Señal , Transactivadores/antagonistas & inhibidores , Transactivadores/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ
15.
FASEB J ; 33(3): 3562-3574, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30462529

RESUMEN

Fatty acid binding protein 4 (FABP4), an intracellular lipid chaperone and adipokine, is expressed by lung macrophages, but the function of macrophage-FABP4 remains elusive. We investigated the role of FABP4 in host defense in a murine model of Pseudomonas aeruginosa pneumonia. Compared with wild-type (WT) mice, FABP4-deficient (FABP4-/-) mice exhibited decreased bacterial clearance and increased mortality when challenged intranasally with P. aeruginosa. These findings in FABP4-/- mice were associated with a delayed neutrophil recruitment into the lungs and were followed by greater acute lung injury and inflammation. Among leukocytes, only macrophages expressed FABP4 in WT mice with P. aeruginosa pneumonia. Chimeric FABP4-/- mice with WT bone marrow were protected from increased mortality seen in chimeric WT mice with FABP4-/- bone marrow during P. aeruginosa pneumonia, thus confirming the role of macrophages as the main source of protective FABP4 against that infection. There was less production of C-X-C motif chemokine ligand 1 (CXCL1) in FABP4-/- alveolar macrophages and lower airway CXCL1 levels in FABP4-/- mice. Delivering recombinant CXCL1 to the airways protected FABP4-/- mice from increased susceptibility to P. aeruginosa pneumonia. Thus, macrophage-FABP4 has a novel role in pulmonary host defense against P. aeruginosa infection by facilitating crosstalk between macrophages and neutrophils via regulation of macrophage CXCL1 production.-Liang, X., Gupta, K., Rojas Quintero, J., Cernadas, M., Kobzik, L., Christou, H., Pier, G. B., Owen, C. A., Çataltepe, S. Macrophage FABP4 is required for neutrophil recruitment and bacterial clearance in Pseudomonas aeruginosa pneumonia.


Asunto(s)
Proteínas de Unión a Ácidos Grasos/inmunología , Macrófagos Alveolares/inmunología , Neutrófilos/inmunología , Neumonía/inmunología , Pseudomonas aeruginosa/inmunología , Lesión Pulmonar Aguda/inmunología , Animales , Médula Ósea/inmunología , Quimiocina CXCL1/inmunología , Inflamación/inmunología , Pulmón/inmunología , Ratones , Ratones Endogámicos C57BL , Infiltración Neutrófila/inmunología , Infecciones por Pseudomonas/inmunología
16.
Oncogene ; 38(15): 2778-2787, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30542115

RESUMEN

Multiple cancer signalling networks take part in regulatory crosstalks with the Hippo tumour suppressor pathway through the transcriptional cofactor Yes-associated protein (YAP). Nevertheless, how YAP is controlled by pathway crosstalks in tumourigenesis remains poorly understood. Here, we performed a targeted kinase inhibitor screen in human cancer cells to identify novel Hippo pathway regulators. Notably, we identified the nerve growth factor (NGF) receptor tyrosine kinase (NTRK1), a molecule not previously associated with Hippo signalling. NTRK1 inhibition decreased YAP-driven transcription, cancer cell proliferation and migration. Furthermore, using a complementary functional genomics approach and mouse xenograft models, we show that NTRK1 regulates YAP oncogenic activity in vivo. Mechanistically, NTRK1 inhibition was found to induce large suppressor kinase 1 (LATS1) phosphorylation and to control YAP subcellular localization. Taken together, these results provide compelling evidence of crosstalks between the NGF-NTRK1 and Hippo cancer pathways.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Oncogenes/genética , Fosfoproteínas/genética , Receptor trkA/genética , Animales , Carcinogénesis/genética , Línea Celular , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Fosforilación/genética , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Factores de Transcripción , Transcripción Genética/genética , Proteínas Señalizadoras YAP
18.
Mol Syst Biol ; 14(5): e7998, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29773677

RESUMEN

Attempts to develop drugs that address sepsis based on leads developed in animal models have failed. We sought to identify leads based on human data by exploiting a natural experiment: the relative resistance of children to mortality from severe infections and sepsis. Using public datasets, we identified key differences in pathway activity (Pathprint) in blood transcriptome profiles of septic adults and children. To find drugs that could promote beneficial (child) pathways or inhibit harmful (adult) ones, we built an in silico pathway drug network (PDN) using expression correlation between drug, disease, and pathway gene signatures across 58,475 microarrays. Specific pathway clusters from children or adults were assessed for correlation with drug-based signatures. Validation by literature curation and by direct testing in an endotoxemia model of murine sepsis of the most correlated drug candidates demonstrated that the Pathprint-PDN methodology is more effective at generating positive drug leads than gene-level methods (e.g., CMap). Pathway-centric Pathprint-PDN is a powerful new way to identify drug candidates for intervention against sepsis and provides direct insight into pathways that may determine survival.


Asunto(s)
Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Sepsis/tratamiento farmacológico , Sepsis/mortalidad , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Niño , Preescolar , Análisis por Conglomerados , Simulación por Computador , Modelos Animales de Enfermedad , Resistencia a la Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis por Micromatrices , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Transcriptoma , Adulto Joven
19.
Am J Respir Crit Care Med ; 198(2): 256-263, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29546996

RESUMEN

Pneumonia is a complex pulmonary disease in need of new clinical approaches. Although triggered by a pathogen, pneumonia often results from dysregulations of host defense that likely precede infection. The coordinated activities of immune resistance and tissue resilience then dictate whether and how pneumonia progresses or resolves. Inadequate or inappropriate host responses lead to more severe outcomes such as acute respiratory distress syndrome and to organ dysfunction beyond the lungs and over extended time frames after pathogen clearance, some of which increase the risk for subsequent pneumonia. Improved understanding of such host responses will guide the development of novel approaches for preventing and curing pneumonia and for mitigating the subsequent pulmonary and extrapulmonary complications of pneumonia. The NHLBI assembled a working group of extramural investigators to prioritize avenues of host-directed pneumonia research that should yield novel approaches for interrupting the cycle of unhealthy decline caused by pneumonia. This report summarizes the working group's specific recommendations in the areas of pneumonia susceptibility, host response, and consequences. Overarching goals include the development of more host-focused clinical approaches for preventing and treating pneumonia, the generation of predictive tools (for pneumonia occurrence, severity, and outcome), and the elucidation of mechanisms mediating immune resistance and tissue resilience in the lung. Specific areas of research are highlighted as especially promising for making advances against pneumonia.


Asunto(s)
Susceptibilidad a Enfermedades/fisiopatología , Interacciones Microbiota-Huesped/fisiología , Pulmón/fisiopatología , Neumonía/fisiopatología , Informe de Investigación , Síndrome de Dificultad Respiratoria/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Infecciones Bacterianas/fisiopatología , Congresos como Asunto , Femenino , Humanos , Masculino , Persona de Mediana Edad , National Heart, Lung, and Blood Institute (U.S.) , Estados Unidos , Virosis/fisiopatología
20.
FEBS J ; 285(2): 244-260, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29197182

RESUMEN

The goals of this study were to (a) define which host genes are of particular importance during the interactions between macrophages and intracellular pathogens, and (b) use this knowledge to gain fresh, experimental understanding of how macrophage activities may be manipulated during host defense. We designed an in silico method for meta-analysis of microarray gene expression data, and used this to combine data from 16 different studies of cells in the monocyte-macrophage lineage infected with seven different pathogens. Three thousand four hundred ninety-eight genes were identified, which we call the macrophage intracellular pathogen response (macIPR) gene set. As expected, the macIPR gene set showed a strong bias toward genes previously associated with the immune response. Predicted target sites for miR-182-5p (miR-182) were strongly over-represented among macIPR genes, indicating an unexpected role for miR-182-regulatable genes during intracellular pathogenesis. We therefore transfected primary human alveolar macrophage-like monocyte-derived macrophages from multiple different donors with synthetic miR-182, and found that miR-182 overexpression (a) increases proinflammatory gene induction during infection with Francisella tularensis live vaccine strain (LVS), (b) primes macrophages for increased autophagy, and (c) enhances macrophage control of both gram negative F. tularensisLVS and gram positive Bacillus anthracisANR-1 spores. These data therefore suggest a new application for miR-182 in promoting resistance to intracellular pathogens.


Asunto(s)
Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Macrófagos Alveolares/microbiología , MicroARNs/metabolismo , Imitación Molecular , Autofagia , Bacillus anthracis/patogenicidad , Conjuntos de Datos como Asunto , Francisella tularensis/patogenicidad , Humanos , Mediadores de Inflamación/metabolismo , Macrófagos Alveolares/metabolismo , MicroARNs/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...