Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neuron ; 112(10): 1524-1526, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754370

RESUMEN

In this talk with Neuron, Christof Koch, a physicist and neuroscientist, advocates for a pragmatic program to track the footprints of consciousness in the brain and for team science, explains the recent pseudo-controversy regarding integrated information theory of consciousness, and speaks about the joy of exploring the mysteries around us.


Asunto(s)
Estado de Conciencia , Neurociencias , Humanos , Estado de Conciencia/fisiología , Historia del Siglo XX , Encéfalo/fisiología , Historia del Siglo XXI
2.
Neuron ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38447579

RESUMEN

In complex environments, animals can adopt diverse strategies to find rewards. How distinct strategies differentially engage brain circuits is not well understood. Here, we investigate this question, focusing on the cortical Vip-Sst disinhibitory circuit between vasoactive intestinal peptide-postive (Vip) interneurons and somatostatin-positive (Sst) interneurons. We characterize the behavioral strategies used by mice during a visual change detection task. Using a dynamic logistic regression model, we find that individual mice use mixtures of a visual comparison strategy and a statistical timing strategy. Separately, mice also have periods of task engagement and disengagement. Two-photon calcium imaging shows large strategy-dependent differences in neural activity in excitatory, Sst inhibitory, and Vip inhibitory cells in response to both image changes and image omissions. In contrast, task engagement has limited effects on neural population activity. We find that the diversity of neural correlates of strategy can be understood parsimoniously as the increased activation of the Vip-Sst disinhibitory circuit during the visual comparison strategy, which facilitates task-appropriate responses.

3.
bioRxiv ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38352535

RESUMEN

Cortical stimulation with single pulses is a common technique in clinical practice and research. However, we still do not understand the extent to which it engages subcortical circuits which contribute to the associated evoked potentials (EPs). Here we find that cortical stimulation generates remarkably similar EPs in humans and mice, with a late component similarly modulated by the subject's behavioral state. We optogenetically dissect the underlying circuit in mice, demonstrating that the late component of these EPs is caused by a thalamic hyperpolarization and rebound. The magnitude of this late component correlates with the bursting frequency and synchronicity of thalamic neurons, modulated by the subject's behavioral state. A simulation of the thalamo-cortical circuit highlights that both intrinsic thalamic currents as well as cortical and thalamic GABAergic neurons contribute to this response profile. We conclude that the cortical stimulation engages cortico-thalamo-cortical circuits highly preserved across different species and stimulation modalities.

4.
bioRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36824721

RESUMEN

Electric fields affect the activity of neurons and brain circuits, yet how this interaction happens at the cellular level remains enigmatic. Lack of understanding on how to stimulate the human brain to promote or suppress specific activity patterns significantly limits basic research and clinical applications. Here we study how electric fields impact the subthreshold and spiking properties of major cortical neuronal classes. We find that cortical neurons in rodent neocortex and hippocampus as well as human cortex exhibit strong and cell class-dependent entrainment that depends on the stimulation frequency. Excitatory pyramidal neurons with their typically slower spike rate entrain to slow and fast electric fields, while inhibitory classes like Pvalb and SST with their fast spiking predominantly phase lock to fast fields. We show this spike-field entrainment is the result of two effects: non-specific membrane polarization occurring across classes and class-specific excitability properties. Importantly, these properties of spike-field and class-specific entrainment are present in cells across cortical areas and species (mouse and human). These findings open the door to the design of selective and class-specific neuromodulation technologies.

5.
Nat Neurosci ; 27(1): 129-136, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37957319

RESUMEN

Visual masking can reveal the timescale of perception, but the underlying circuit mechanisms are not understood. Here we describe a backward masking task in mice and humans in which the location of a stimulus is potently masked. Humans report reduced subjective visibility that tracks behavioral deficits. In mice, both masking and optogenetic silencing of visual cortex (V1) reduce performance over a similar timecourse but have distinct effects on response rates and accuracy. Activity in V1 is consistent with masked behavior when quantified over long, but not short, time windows. A dual accumulator model recapitulates both mouse and human behavior. The model and subjects' performance imply that the initial spikes in V1 can trigger a correct response, but subsequent V1 activity degrades performance. Supporting this hypothesis, optogenetically suppressing mask-evoked activity in V1 fully restores accurate behavior. Together, these results demonstrate that mice, like humans, are susceptible to masking and that target and mask information is first confounded downstream of V1.


Asunto(s)
Enmascaramiento Perceptual , Corteza Visual , Humanos , Ratones , Animales , Enmascaramiento Perceptual/fisiología , Corteza Visual/fisiología , Estimulación Luminosa/métodos , Percepción Visual/fisiología
6.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37662298

RESUMEN

To understand the neural basis of behavior, it is essential to sensitively and accurately measure neural activity at single neuron and single spike resolution. Extracellular electrophysiology delivers this, but it has biases in the neurons it detects and it imperfectly resolves their action potentials. To minimize these limitations, we developed a silicon probe with much smaller and denser recording sites than previous designs, called Neuropixels Ultra (NP Ultra). This device samples neuronal activity at ultra-high spatial density (~10 times higher than previous probes) with low noise levels, while trading off recording span. NP Ultra is effectively an implantable voltage-sensing camera that captures a planar image of a neuron's electrical field. We use a spike sorting algorithm optimized for these probes to demonstrate that the yield of visually-responsive neurons in recordings from mouse visual cortex improves up to ~3-fold. We show that NP Ultra can record from small neuronal structures including axons and dendrites. Recordings across multiple brain regions and four species revealed a subset of extracellular action potentials with unexpectedly small spatial spread and axon-like features. We share a large-scale dataset of these brain-wide recordings in mice as a resource for studies of neuronal biophysics. Finally, using ground-truth identification of three major inhibitory cortical cell types, we found that these cell types were discriminable with approximately 75% success, a significant improvement over lower-resolution recordings. NP Ultra improves spike sorting performance, detection of subcellular compartments, and cell type classification to enable more powerful dissection of neural circuit activity during behavior.

7.
Elife ; 122023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37486105

RESUMEN

Local field potential (LFP) recordings reflect the dynamics of the current source density (CSD) in brain tissue. The synaptic, cellular, and circuit contributions to current sinks and sources are ill-understood. We investigated these in mouse primary visual cortex using public Neuropixels recordings and a detailed circuit model based on simulating the Hodgkin-Huxley dynamics of >50,000 neurons belonging to 17 cell types. The model simultaneously captured spiking and CSD responses and demonstrated a two-way dissociation: firing rates are altered with minor effects on the CSD pattern by adjusting synaptic weights, and CSD is altered with minor effects on firing rates by adjusting synaptic placement on the dendrites. We describe how thalamocortical inputs and recurrent connections sculpt specific sinks and sources early in the visual response, whereas cortical feedback crucially alters them in later stages. These results establish quantitative links between macroscopic brain measurements (LFP/CSD) and microscopic biophysics-based understanding of neuron dynamics and show that CSD analysis provides powerful constraints for modeling beyond those from considering spikes.


Asunto(s)
Neuronas , Corteza Visual Primaria , Animales , Ratones , Neuronas/fisiología , Encéfalo , Modelos Neurológicos
8.
Elife ; 122023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37432073

RESUMEN

Nullius in verba ('trust no one'), chosen as the motto of the Royal Society in 1660, implies that independently verifiable observations-rather than authoritative claims-are a defining feature of empirical science. As the complexity of modern scientific instrumentation has made exact replications prohibitive, sharing data is now essential for ensuring the trustworthiness of one's findings. While embraced in spirit by many, in practice open data sharing remains the exception in contemporary systems neuroscience. Here, we take stock of the Allen Brain Observatory, an effort to share data and metadata associated with surveys of neuronal activity in the visual system of laboratory mice. Data from these surveys have been used to produce new discoveries, to validate computational algorithms, and as a benchmark for comparison with other data, resulting in over 100 publications and preprints to date. We distill some of the lessons learned about open surveys and data reuse, including remaining barriers to data sharing and what might be done to address these.


Asunto(s)
Neurofisiología , Neurociencias , Animales , Ratones , Encéfalo , Algoritmos , Benchmarking
9.
Elife ; 122023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37358562

RESUMEN

Perturbational complexity analysis predicts the presence of consciousness in volunteers and patients by stimulating the brain with brief pulses, recording EEG responses, and computing their spatiotemporal complexity. We examined the underlying neural circuits in mice by directly stimulating cortex while recording with EEG and Neuropixels probes during wakefulness and isoflurane anesthesia. When mice are awake, stimulation of deep cortical layers reliably evokes locally a brief pulse of excitation, followed by a biphasic sequence of 120 ms profound off period and a rebound excitation. A similar pattern, partially attributed to burst spiking, is seen in thalamic nuclei and is associated with a pronounced late component in the evoked EEG. We infer that cortico-thalamo-cortical interactions drive the long-lasting evoked EEG signals elicited by deep cortical stimulation during the awake state. The cortical and thalamic off period and rebound excitation, and the late component in the EEG, are reduced during running and absent during anesthesia.


Asunto(s)
Isoflurano , Tálamo , Ratones , Animales , Tálamo/fisiología , Vigilia , Estado de Conciencia , Electroencefalografía
11.
Neurocrit Care ; 38(3): 584-590, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37029315

RESUMEN

Early reemergence of consciousness predicts long-term functional recovery for patients with severe brain injury. However, tools to reliably detect consciousness in the intensive care unit are lacking. Transcranial magnetic stimulation electroencephalography has the potential to detect consciousness in the intensive care unit, predict recovery, and prevent premature withdrawal of life-sustaining therapy.


Asunto(s)
Estado de Conciencia , Estimulación Magnética Transcraneal , Humanos , Estado de Conciencia/fisiología , Electroencefalografía , Unidades de Cuidados Intensivos , Trastornos de la Conciencia/diagnóstico , Trastornos de la Conciencia/terapia
12.
Front Comput Neurosci ; 17: 1040629, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36994445

RESUMEN

Neurophysiological differentiation (ND), a measure of the number of distinct activity states that a neural population visits over a time interval, has been used as a correlate of meaningfulness or subjective perception of visual stimuli. ND has largely been studied in non-invasive human whole-brain recordings where spatial resolution is limited. However, it is likely that perception is supported by discrete neuronal populations rather than the whole brain. Therefore, here we use Neuropixels recordings from the mouse brain to characterize the ND metric across a wide range of temporal scales, within neural populations recorded at single-cell resolution in localized regions. Using the spiking activity of thousands of simultaneously recorded neurons spanning 6 visual cortical areas and the visual thalamus, we show that the ND of stimulus-evoked activity of the entire visual cortex is higher for naturalistic stimuli relative to artificial ones. This finding holds in most individual areas throughout the visual hierarchy. Moreover, for animals performing an image change detection task, ND of the entire visual cortex (though not individual areas) is higher for successful detection compared to failed trials, consistent with the assumed perception of the stimulus. Together, these results suggest that ND computed on cellular-level neural recordings is a useful tool highlighting cell populations that may be involved in subjective perception.

13.
PLoS One ; 18(2): e0268577, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36763595

RESUMEN

The relationship between conscious experience and brain activity has intrigued scientists and philosophers for centuries. In the last decades, several theories have suggested different accounts for these relationships. These theories have developed in parallel, with little to no cross-talk among them. To advance research on consciousness, we established an adversarial collaboration between proponents of two of the major theories in the field, Global Neuronal Workspace and Integrated Information Theory. Together, we devised and preregistered two experiments that test contrasting predictions of these theories concerning the location and timing of correlates of visual consciousness, which have been endorsed by the theories' proponents. Predicted outcomes should either support, refute, or challenge these theories. Six theory-impartial laboratories will follow the study protocol specified here, using three complementary methods: Functional Magnetic Resonance Imaging (fMRI), Magneto-Electroencephalography (M-EEG), and intracranial electroencephalography (iEEG). The study protocol will include built-in replications, both between labs and within datasets. Through this ambitious undertaking, we hope to provide decisive evidence in favor or against the two theories and clarify the footprints of conscious visual perception in the human brain, while also providing an innovative model of large-scale, collaborative, and open science practice.


Asunto(s)
Estado de Conciencia , Teoría de la Información , Humanos , Estado de Conciencia/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Percepción Visual , Electroencefalografía
14.
Cell Rep ; 42(2): 112118, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36774552

RESUMEN

The claustrum (CLA) is a conspicuous subcortical structure interconnected with cortical and subcortical regions. Its regional anatomy and cell-type-specific connections in the mouse remain not fully determined. Using multimodal reference datasets, we confirmed the delineation of the mouse CLA as a single group of neurons embedded in the agranular insular cortex. We quantitatively investigated brain-wide inputs and outputs of CLA using bulk anterograde and retrograde viral tracing data and single neuron tracing data. We found that the prefrontal module has more cell types projecting to the CLA than other cortical modules, with layer 5 IT neurons predominating. We found nine morphological types of CLA principal neurons that topographically innervate functionally linked cortical targets, preferentially the midline cortical areas, secondary motor area, and entorhinal area. Together, this study provides a detailed wiring diagram of the cell-type-specific connections of the mouse CLA, laying a foundation for studying its functions at the cellular level.


Asunto(s)
Claustro , Corteza Motora , Ratones , Animales , Claustro/fisiología , Vías Nerviosas/fisiología , Corteza Entorrinal/fisiología , Neuronas
15.
Neuron ; 111(2): 275-290.e5, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36368317

RESUMEN

The claustrum is a small subcortical structure with widespread connections to disparate regions of the cortex. However, the impact of the claustrum on cortical activity is not fully understood, particularly beyond frontal areas. Here, using optogenetics and multi-regional Neuropixels recordings from over 15,000 cortical neurons in awake mice, we demonstrate that the effect of claustrum input to the cortex differs depending on brain area, layer, and cell type. Brief claustrum stimulation, producing approximately 1 spike per claustrum neuron, affects many fast spiking (FS; putative inhibitory) but relatively fewer regular-spiking (RS; putative excitatory) cortical neurons and leads to a modest decrease in population activity in frontal cortical areas. Prolonged claustrum stimulation affects many more cortical neurons and can increase or decrease spiking activity. More excitation occurs in posterior regions and superficial layers, while inhibition predominates in frontal regions and deeper layers. These findings suggest that claustro-cortical circuits are organized into functional modules.


Asunto(s)
Claustro , Ratones , Animales , Claustro/fisiología , Ganglios Basales/fisiología , Lóbulo Frontal , Neuronas/fisiología , Optogenética
16.
J Physiol ; 601(15): 3123-3139, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36567262

RESUMEN

The Hodgkin-Huxley model of action potential generation and propagation, published in the Journal of Physiology in 1952, initiated the field of biophysically detailed computational modelling in neuroscience, which has expanded to encompass a variety of species and components of the nervous system. Here we review the developments in this area with a focus on efforts in the community towards modelling the mammalian neocortex using spatially extended conductance-based neuronal models. The Hodgkin-Huxley formalism and related foundational contributions, such as Rall's cable theory, remain widely used in these efforts to the current day. We argue that at present the field is undergoing a qualitative change due to new very rich datasets describing the composition, connectivity and functional activity of cortical circuits, which are being integrated systematically into large-scale network models. This trend, combined with the accelerating development of convenient software tools supporting such complex modelling projects, is giving rise to highly detailed models of the cortex that are extensively constrained by the data, enabling computational investigation of a multitude of questions about cortical structure and function.


Asunto(s)
Neocórtex , Neuronas , Animales , Neuronas/fisiología , Potenciales de Acción/fisiología , Simulación por Computador , Modelos Neurológicos , Mamíferos
17.
Semin Cell Dev Biol ; 144: 97-102, 2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35339359

RESUMEN

Advances in the field of human stem cells are often a source of public and ethical controversy. Researchers must frequently balance diverse societal perspectives on questions of morality with the pursuit of medical therapeutics and innovation. Recent developments in brain organoids make this challenge even more acute. Brain organoids are a new class of brain surrogate generated from human pluripotent stem cells (hPSCs). They have gained traction as a model for studying the intricacies of the human brain by using advancements in stem cell biology to recapitulate aspects of the developing human brain in vitro. However, recent observation of neural oscillations spontaneously emerging from these organoids raises the question of whether brain organoids are or could become conscious. At the same time, brain organoids offer a potentially unique opportunity to scientifically understand consciousness. To address these issues, experimental biologists, philosophers, and ethicists united to discuss the possibility of consciousness in human brain organoids and the consequent ethical and moral implications.


Asunto(s)
Estado de Conciencia , Células Madre Pluripotentes , Humanos , Condición Moral , Encéfalo , Organoides
18.
Cell Rep ; 41(13): 111873, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36577383

RESUMEN

Temporal lobe epilepsy is the fourth most common neurological disorder, with about 40% of patients not responding to pharmacological treatment. Increased cellular loss is linked to disease severity and pathological phenotypes such as heightened seizure propensity. While the hippocampus is the target of therapeutic interventions, the impact of the disease at the cellular level remains unclear. Here, we show that hippocampal granule cells change with disease progression as measured in living, resected hippocampal tissue excised from patients with epilepsy. We show that granule cells increase excitability and shorten response latency while also enlarging in cellular volume and spine density. Single-nucleus RNA sequencing combined with simulations ascribes the changes to three conductances: BK, Cav2.2, and Kir2.1. In a network model, we show that these changes related to disease progression bring the circuit into a more excitable state, while reversing them produces a less excitable, "early-disease-like" state.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Hipocampo/patología , Epilepsia/patología , Neuronas/fisiología , Epilepsia del Lóbulo Temporal/patología , Simulación por Computador
20.
Neuron ; 110(22): 3661-3666, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36240770

RESUMEN

We propose centralized brain observatories for large-scale recordings of neural activity in mice and non-human primates coupled with cloud-based data analysis and sharing. Such observatories will advance reproducible systems neuroscience and democratize access to the most advanced tools and data.


Asunto(s)
Encéfalo , Neurociencias , Animales , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA