Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 22(19): 14862-73, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25994267

RESUMEN

Elevated levels of adsorbable organic bromine compounds (AOBr) have been detected in German lakes, and cyanobacteria like Microcystis, which are known for the synthesis of microcystins, are one of the main producers of natural organobromines. However, very little is known about how environmental realistic concentrations of organobromines impact invertebrates. Here, the nematode Caenorhabditis elegans was exposed to AOBr-containing surface water samples and to a Microcystis aeruginosa-enriched batch culture (MC-BA) and compared to single organobromines and microcystin-LR exposures. Stimulatory effects were observed in certain life trait variables, which were particularly pronounced in nematodes exposed to MC-BA. A whole genome DNA-microarray revealed that MC-BA led to the differential expression of more than 2000 genes, many of which are known to be involved in metabolic, neurologic, and morphologic processes. Moreover, the upregulation of cyp- and the downregulation of abu-genes suggested the presence of chronic stress. However, the nematodes were not marked by negative phenotypic responses. The observed difference in MC-BA and microcystin-LR (which impacted lifespan, growth, and reproduction) exposed nematodes was hypothesized to be likely due to other compounds within the batch culture. Most likely, the exposure to low concentrations of organobromines appears to buffer the effects of toxic substances, like microcystin-LR.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Hidrocarburos Bromados/farmacología , Contaminantes Químicos del Agua/farmacología , Adsorción , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Toxinas Marinas , Microcistinas/farmacología , Microcystis/metabolismo , Transcriptoma/efectos de los fármacos
2.
Int J Environ Res Public Health ; 11(5): 4589-606, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24776722

RESUMEN

In fresh waters cyanobacterial blooms can produce a variety of toxins, such as microcystin variants (MCs) and anatoxin-a (ANA). ANA is a well-known neurotoxin, whereas MCs are hepatotoxic and, to a lesser degree, also neurotoxic. Neurotoxicity applies especially to invertebrates lacking livers. Current standardized neurotoxicity screening methods use rats or mice. However, in order to minimize vertebrate animal experiments as well as experimental time and effort, many investigators have proposed the nematode Caenorhabditis elegans as an appropriate invertebrate model. Therefore, four known neurotoxic compounds (positive compounds: chlorpyrifos, abamectin, atropine, and acrylamide) were chosen to verify the expected impacts on autonomic (locomotion, feeding, defecation) and sensory (thermal, chemical, and mechanical sensory perception) functions in C. elegans. This study is another step towards successfully establishing C. elegans as an alternative neurotoxicity model. By using this protocol, anatoxin-a adversely affected locomotive behavior and pharyngeal pumping frequency and, most strongly, chemotactic and thermotactic behavior, whereas MC-LR impacted locomotion, pumping, and mechanical behavior, but not chemical sensory behavior. Environmental samples can also be screened in this simple and fast way for neurotoxic characteristics. The filtrate of a Microcystis aeruginosa culture, known for its hepatotoxicity, also displayed mild neurotoxicity (modulated short-term thermotaxis). These results show the suitability of this assay for environmental cyanotoxin-containing samples.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Microcistinas/toxicidad , Microcystis/química , Neurotoxinas/toxicidad , Pruebas de Toxicidad/métodos , Xenobióticos/toxicidad , Animales , Contaminantes Ambientales/toxicidad
3.
Ecotoxicol Environ Saf ; 104: 194-201, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24726928

RESUMEN

Brominated organic compounds are known as disinfection byproducts. Very recently, however, even natural brominated organic compounds (analyzed as adsorbable organic bromine; AOBr) have been found in decaying freshwater cyanobacteria blooms. Among the identified compounds was dibromoacetic acid (DBAA), which has proven to be neurotoxic at rather high concentrations in mammalian assays. Currently it is open how single compounds as well as complex mixtures impact organisms at environmentally realistic concentrations. Furthermore, it is also unclear how natural organic matter, mainly humic substances (HS), which are present in all freshwater systems, modulates the toxic impact of AOBr. Therefore, two AOBr compounds (DBAA and tetrabromobisphenol-A; TBBP-A) and AOBr-containing water samples were tested using a Caenorhabditis elegans neurotoxicity assay that measured autonomic and sensory functions. TBBP-A had an impact on three response variables of C. elegans and can be classified neurotoxic. In contrast to our expectations, DBAA led to neurostimulation of two autonomic functions, but had a temporary impact on the defecation interval. All surface water samples contained measurable amounts of AOBr. Exposure of C. elegans to concentrated water samples - one in particular - increased three of the four locomotion traits and left defecation activity and both sensory variables unchanged. This stimulation might be due to unidentified compounds in the samples or to a hormetic effect of the AOBr compounds. Thermotactic behavior was characterized by a temporary preference for the colder environment, indicating a temporary mild neurotoxicity. Overall, the set of relative simple phenotypic tests used in the current study revealed a meaningful neurotoxic or neurostimulative profile in response to chemical compounds or natural samples. Furthermore, it shows that the resulting response to natural AOBr compounds at environmentally realistic concentrations was not necessarily adverse, but instead, that the mixtures of natural AOBr were neurostimulatory.


Asunto(s)
Acetatos/toxicidad , Caenorhabditis elegans/efectos de los fármacos , Bifenilos Polibrominados/toxicidad , Pruebas de Toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Agua Dulce/química , Neuronas/efectos de los fármacos
4.
J Chromatogr A ; 1217(15): 2206-15, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20207360

RESUMEN

A novel, cost-efficient method for the analytical extraction of the Fusarium mycotoxin zearalenone (ZON) from edible oils by dynamic covalent hydrazine chemistry (DCHC) was developed and validated for its application with high performance liquid chromatography-fluorescence detection (HPLC-FLD). ZON is extracted from the edible oil by hydrazone formation on a polymer resin functionalised with hydrazine groups and subsequently released by hydrolysis. Specifity and precision of this approach are superior to liquid partitioning or gel permeation chromatography (GPC). DCHC also extracts zearalanone (ZAN) but not alpha-/beta-zearalenol or -zearalanol. The hydrodynamic properties of ZON, which were estimated using molecular simulation data, indicate that the compound is unaffected by nanofiltration through the resin pores and thus selectively extracted. The method's levels of detection and quantification are 10 and 30 microg/kg, using 0.2g of sample. Linearity is given in the range of 10-20,000 microg/kg, the average recovery being 89%. Bias and relative standard deviations do not exceed 7%. In a sample survey of 44 commercial edible oils based on various agricultural commodities (maize, olives, nuts, seeds, etc.) ZON was detected in four maize oil samples, the average content in the positive samples being 99 microg/kg. The HPLC-FLD results were confirmed by HPLC-tandem mass spectrometry and compared to those obtained by a liquid partitioning based sample preparation procedure.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Fusarium/química , Hidrazinas/química , Aceites de Plantas/química , Zearalenona/análisis , Zearalenona/aislamiento & purificación , Ácidos/química , Catálisis , Simulación por Computador , Polímeros/química , Reproducibilidad de los Resultados , Resinas Sintéticas/química , Solventes/química , Factores de Tiempo , Agua/química , Zearalenona/análogos & derivados , Zearalenona/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...