Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(7): 1870-1889, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36647630

RESUMEN

Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003-2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco ), net ecosystem CO2 exchange (NEE; Reco - GPP), and terrestrial methane (CH4 ) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of -850 Tg CO2 -C year-1 . Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4 ) were estimated at 35 Tg CH4 -C year-1 . Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.


Asunto(s)
Ecosistema , Taiga , Carbono , Dióxido de Carbono , Tundra , Metano , Ciclo del Carbono
2.
Glob Chang Biol ; 27(17): 4040-4059, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33913236

RESUMEN

The regional variability in tundra and boreal carbon dioxide (CO2 ) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990-2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2 ) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE -46 and -29 g C m-2  yr-1 , respectively) compared to tundra (average annual NEE +10 and -2 g C m-2  yr-1 ). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990-2015, although uncertainty remains high.


Asunto(s)
Dióxido de Carbono , Ecosistema , Carbono , Dióxido de Carbono/análisis , Reproducibilidad de los Resultados , Estaciones del Año , Suelo , Tundra , Incertidumbre
3.
J Environ Qual ; 40(5): 1359-65, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21869497

RESUMEN

Trace gas fluxes exhibit extensive spatial and temporal variability that is dependent on a number of factors, including meteorology, ambient concentration, and emission source size. Previous studies have found that agricultural fertilization contributes to higher fluxes of certain gases. The magnitude of trace gas fluxes over unfertilized crops is still uncertain. In the present study, deposition of ammonia (NH), nitric acid (HNO), and sulfur dioxide (SO) was measured over unfertilized soybean using the flux-gradient technique. The eddy diffusivity was estimated from eddy covariance measurements of temperature fluxes, resulting in K of 0.64 ± 0.30 m s. Flux means and standard deviations were -0.14 ± 0.13, -0.22 ± 0.19, and -0.38 ± 0.54 µg m s for NH, HNO, and SO, respectively. Low concentrations of NH and HNO increased the relative uncertainties in the deposition velocities estimated from measured fluxes. This contributed to dissimilarities between deposition velocities estimated from the resistance analogy and deposition velocities estimated from fluxes. However, wet canopy conditions during the study may have led to an underestimation of deposition by the resistance analogy because the resistance method does not accurately describe the enhanced deposition rates that occur after dew formation. Quantification of vegetation characteristics, such as leaf wetness and apoplast chemistry, would be beneficial in future studies to more accurately determine stomatal resistance and its influence on fluxes.


Asunto(s)
Agricultura , Amoníaco/análisis , Gases/análisis , Ácido Nítrico/análisis , Dióxido de Azufre/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...