Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474083

RESUMEN

Diamond-like carbon (DLC) layers are known for their high corrosion and wear resistance, low friction, and high biocompatibility. However, it is often necessary to dope DLC layers with additional chemical elements to strengthen their adhesion to the substrate. Ti-DLC layers (doped with 0.4, 2.1, 3.7, 6.6, and 12.8 at.% of Ti) were prepared by dual pulsed laser deposition, and pure DLC, glass, and polystyrene (PS) were used as controls. In vitro cell-material interactions were investigated with an emphasis on cell adhesion, proliferation, and osteogenic differentiation. We observed slightly increasing roughness and contact angle and decreasing surface free energy on Ti-DLC layers with increasing Ti content. Three-week biological experiments were performed using adipose tissue-derived stem cells (ADSCs) and bone marrow mesenchymal stem cells (bmMSCs) in vitro. The cell proliferation activity was similar or slightly higher on the Ti-doped materials than on glass and PS. Osteogenic cell differentiation on all materials was proved by collagen and osteocalcin production, ALP activity, and Ca deposition. The bmMSCs exhibited greater initial proliferation potential and an earlier onset of osteogenic differentiation than the ADSCs. The ADSCs showed a slightly higher formation of focal adhesions, higher metabolic activity, and Ca deposition with increasing Ti content.


Asunto(s)
Artroplastia de Reemplazo , Células Madre Mesenquimatosas , Titanio/química , Propiedades de Superficie , Carbono/química , Osteogénesis , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo
2.
Nanomaterials (Basel) ; 11(3)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668693

RESUMEN

This work attempts to understand the behaviour of Ge-induced cytotoxicity of germanium-doped hydrogen-free diamond-like carbon (DLC) films recently thoroughly studied and published by Jelinek et al. At a low doping level, the films showed no cytotoxicity, while at a higher doping level, the films were found to exhibit medium to high cytotoxicity. We demonstrate, using surface-sensitive methods-two-angle X-ray-induced core-level photoelectron spectroscopy (ARXPS) and Low Energy Ion Scattering (LEIS) spectroscopy, that at a low doping level, the layers are capped by a carbon film which impedes the contact of Ge species with tissue. For higher Ge content in the DLC films, oxidized Ge species are located at the top surface of the layers, provoking cytotoxicity. The present results indicate no threshold for Ge concentration in cell culture substrate to avoid a severe toxic reaction.

3.
Nanomaterials (Basel) ; 9(3)2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30889797

RESUMEN

This paper deals with the synthesis and study of the properties of germanium-doped diamond-like carbon (DLC) films. For deposition of doped DLC films, hybrid laser technology was used. Using two deposition lasers, it was possible to arrange the dopant concentrations by varying the laser repetition rate. Doped films of Ge concentrations from 0 at.% to 12 at.% were prepared on Si (100) and fused silica (FS) substrates at room temperature. Film properties, such as growth rate, roughness, scanning electron microscopy (SEM) morphology, wavelength dependent X-ray spectroscopy (WDS) composition, VIS-near infrared (IR) transmittance, and biological properties (cytotoxicity, effects on cellular morphology, and ability to produce reactive oxygen species (ROS)) were studied in relation to codeposition conditions and dopant concentrations. The analysis showed that Ge-DLC films exhibit cytotoxicity for higher Ge doping.

4.
J Biomater Appl ; 32(10): 1464-1475, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29621929

RESUMEN

The goal of our study is to design BaTiO3 ferroelectric layers that will cover metal implants and provide improved osseointegration. We synthesized ferroelectric BaTiO3 layers on Pt/fused silica substrates, and we studied their physical and bio-properties. BaTiO3 and Pt layers were prepared using KrF excimer laser ablation at substrate temperature Ts in the range from 200°C to 750°C in vacuum or under oxygen pressure of 10 Pa, 15 Pa, and 20 Pa. The BaTiO3/Pt and Pt layers adhered well to the substrates. BaTiO3 films of crystallite size 60-140 nm were fabricated. Ferroelectric loops were measured and ferroelectricity was also confirmed using Raman scattering measurements. Results of atomic force microscopy topology and the X-ray diffraction structure of the BaTiO3/Pt/fused silica multilayers are presented. The adhesion, viability, growth, and osteogenic differentiation of human osteoblast-like Saos-2 cells were also studied. On days 1, 3, and 7 after seeding, the lowest cell numbers were found on non-ferroelectric BaTiO3, while the values on ferroelectric BaTiO3, on non-annealed and annealed Pt interlayers, and on the control tissue culture polystyrene dishes and microscopic glass slides were similar, and were usually significantly higher than on non-ferroelectric BaTiO3. A similar trend was observed for the intensity of the fluorescence of alkaline phosphatase, a medium-term marker of osteogenic differentiation, and of osteocalcin, a late marker of osteogenic differentiation. At the same time, the cell viability, tested on day 1 after seeding, was very high on all tested samples, reaching 93-99%. Ferroelectric BaTiO3 films deposited on metallic bone implants through a Pt interlayer can therefore markedly improve the osseointegration of these implants in comparison with non-ferroelectric BaTiO3 films.


Asunto(s)
Compuestos de Bario/química , Sustitutos de Huesos/química , Nanopartículas/química , Platino (Metal)/química , Dióxido de Silicio/química , Titanio/química , Línea Celular , Electricidad , Humanos , Rayos Láser , Nanopartículas/ultraestructura , Osteoblastos/citología , Osteogénesis , Prótesis e Implantes
5.
J Mater Sci Mater Med ; 28(1): 17, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28000113

RESUMEN

Diamond-like carbon (DLC) thin films are promising for use in coating orthopaedic, dental and cardiovascular implants. The problem of DLC layers lies in their weak layer adhesion to metal implants. Chromium is used as a dopant for improving the adhesion of DLC films. Cr-DLC layers were prepared by a hybrid technology, using a combination of pulsed laser deposition (PLD) from a graphite target and magnetron sputtering. Depending on the deposition conditions, the concentration of Cr in the DLC layers moved from zero to 10.0 at.%. The effect of DLC layers with 0.0, 0.9, 1.8, 7.3, 7.7 and 10.0 at.% Cr content on the adhesion and osteogenic differentiation of human osteoblast-like Saos-2 cells was assessed in vitro. The DLC samples that contained 7.7 and 10.0 at.% of Cr supported cell spreading on day 1 after seeding. On day three after seeding, the most apparent vinculin-containing focal adhesion plaques were also found on samples with higher concentrations of chromium. On the other hand, the expression of type I collagen and alkaline phosphatase at the mRNA and protein level was the highest on Cr-DLC samples with a lower concentration of Cr (0-1.8 at.%). We can conclude that higher concentrations of chromium supported cell adhesion; however DLC and DLC doped with a lower concentration of chromium supported osteogenic cell differentiation.


Asunto(s)
Carbono/química , Adhesión Celular , Diferenciación Celular , Cromo/química , Osteoblastos/citología , Fosfatasa Alcalina/metabolismo , Línea Celular , Materiales Biocompatibles Revestidos , Colágeno Tipo I/metabolismo , Diamante/química , Adhesiones Focales , Perfilación de la Expresión Génica , Humanos , Rayos Láser , Metales/química , Osteogénesis , ARN Mensajero/metabolismo , Propiedades de Superficie , Talina/química , Vinculina/metabolismo
6.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 1): 334-339, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27770900

RESUMEN

BaTiO3 (BTO) layers were deposited by pulsed laser deposition (PLD) on TiNb, Pt/TiNb, Si (100), and fused silica substrates using various deposition conditions. Polycrystalline BTO with sizes of crystallites in the range from 90nm to 160nm was obtained at elevated substrate temperatures of (600°C-700°C). With increasing deposition temperature above 700°C the formation of unwanted rutile phase prevented the growth of perovskite ferroelectric BTO. Concurrently, with decreasing substrate temperature below 500°C, amorphous films were formed. Post-deposition annealing of the amorphous deposits allowed obtaining perovskite BTO. Using a very thin Pt interlayer between the BTO films and TiNb substrate enabled high-temperature growth of preferentially oriented BTO. Raman spectroscopy and electrical characterization indicated polar ferroelectric behaviour of the BTO films.


Asunto(s)
Aleaciones/química , Compuestos de Bario/química , Materiales Biocompatibles/química , Rayos Láser , Niobio/química , Prótesis e Implantes , Titanio/química , Electricidad , Electrodos , Microscopía Electrónica de Rastreo , Dióxido de Silicio/química , Espectrometría Raman , Difracción de Rayos X
7.
Mater Sci Eng C Mater Biol Appl ; 58: 1217-24, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26478424

RESUMEN

Chromium-enriched diamond-like carbon (DLC) layers were prepared by a hybrid technology using a combination of pulsed laser deposition (PLD) and magnetron sputtering. XRD revealed no chromium peaks, indicating that the layers are mostly amorphous. Carbon (sp(2) and sp(3) bonds) and chromium bonds were determined by XPS from C 1s, O 1s, and Cr 2p photoelectron peaks. Depending on the deposition conditions, the concentration of Cr in DLC layers moved from zero to 10 at.% for as-received sample surfaces, and to about 31 at.% after mild sputter-cleaning by argon ion cluster beam. It should be noted that the most stable Cr(3+) bonding state is in Cr2O3 and Cr(OH)3, and that there is the toxic Cr(6+) state in CrO3. The surface content of hexavalent chromium in the Cr 2p3/2 spectra is rather low, but discernible. The population density of Saos-2 cells was the highest in samples containing higher concentrations of chromium 7.7 and 10 at.%. This means that higher concentrations of chromium supported the cell adhesion and proliferation. In addition, as revealed by a LIVE/DEAD viability/cytotoxicity kit, the cells on all Cr-containing samples maintained high viability (96 to 99%) on days 1 and 3 after seeding. However, this seemingly positive cell behavior could be associated with the risk of dedifferentiation and oncogenic transformation of cells.


Asunto(s)
Materiales Biocompatibles/química , Cromo/química , Diamante/química , Materiales Biocompatibles/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Rayos Láser
8.
Sci Technol Adv Mater ; 16(2): 026002, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27877779

RESUMEN

Perovskite-type ferroelectric (FE) crystals are wide bandgap materials with technologically valuable optical and photoelectric properties. Here, versatile engineering of electronic transitions is demonstrated in FE nanofilms of KTaO3, KNbO3 (KNO), and NaNbO3 (NNO) with a thickness of 10-30 unit cells. Control of the bandgap is achieved using heteroepitaxial growth of new structural phases on SrTiO3 (001) substrates. Compared to bulk crystals, anomalous bandgap narrowing is obtained in the FE state of KNO and NNO films. This effect opposes polarization-induced bandgap widening, which is typically found for FE materials. Transmission electron microscopy and spectroscopic ellipsometry measurements indicate that the formation of higher-symmetry structural phases of KNO and NNO produces the desirable red shift of the absorption spectrum towards visible light, while simultaneously stabilizing robust FE order. Tuning of optical properties in FE films is of interest for nanoscale photonic and optoelectronic devices.

9.
Mater Sci Eng C Mater Biol Appl ; 46: 381-6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25492001

RESUMEN

Diamond-like carbon (DLC) thin films are frequently used for coating of implants. The problem of DLC layers lies in bad layer adhesion to metal implants. Chromium is used as a dopant for improvement of adhesion of DLC films. DLC and Cr-DLC layers were deposited on silicon, Ti6Al4V and CoCrMo substrates by a hybrid technology using combination of pulsed laser deposition (PLD) and magnetron sputtering. The topology of layers was studied using SEM, AFM and mechanical profilometer. Carbon and chromium content and concentration of trivalent and toxic hexavalent chromium bonds were determined by XPS and WDS. It follows from the scratch tests that Cr doping improved adhesion of DLC layers. Ethylene glycol, diiodomethane and deionized water were used to measure the contact angles. The surface free energy (SFE) was calculated. The antibacterial properties were studied using Pseudomonas aeruginosa and Staphylococcus aureus bacteria. The influence of SFE, hydrophobicity and surface roughness on antibacterial ability of doped layers is discussed.


Asunto(s)
Carbono/química , Cromo/química , Rayos Láser
10.
Sci Technol Adv Mater ; 15(4): 045001, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27877702

RESUMEN

Optical index of refraction n is studied by spectroscopic ellipsometry in epitaxial nanofilms of NaNbO3 with thickness ∼10 nm grown on different single-crystal substrates. The index n in the transparency spectral range (n ≈ 2.1 - 2.2) exhibits a strong sensitivity to atmospheric-pressure gas ambience. The index n in air exceeds that in an oxygen ambience by δn ≈ 0.05 - 0.2. The thermo-optical behaviour n(T) indicates ferroelectric state in the nanofilms. The ambience-sensitive optical refraction is discussed in terms of fundamental connection between refraction and ferroelectric polarization in perovskites, screening of depolarizing field on surfaces of the nanofilms, and thermodynamically stable surface reconstructions of NaNbO3.

11.
J Biomed Biotechnol ; 2012: 428503, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22319242

RESUMEN

Pulsed laser deposition was proved as a suitable method for hydroxyapatite (HA) coating of coaxial poly-ɛ-caprolactone/polyvinylalcohol (PCL/PVA) nanofibers. The fibrous morphology of PCL/PVA nanofibers was preserved, if the nanofiber scaffold was coated with thin layers of HA (200 nm and 400 nm). Increasing thickness of HA, however, resulted in a gradual loss of fibrous character. In addition, biomechanical properties were improved after HA deposition on PCL/PVA nanofibers as the value of Young's moduli of elasticity significantly increased. Clearly, thin-layer hydroxyapatite deposition on a nanofiber surface stimulated mesenchymal stem cell viability and their differentiation into osteoblasts. The optimal depth of HA was 800 nm.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células Madre Mesenquimatosas/citología , Nanofibras/química , Osteoblastos/citología , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Durapatita/química , Durapatita/farmacología , Poliésteres/química , Alcohol Polivinílico/química , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...