Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell ; 187(6): 1440-1459.e24, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38490181

RESUMEN

Following the fertilization of an egg by a single sperm, the egg coat or zona pellucida (ZP) hardens and polyspermy is irreversibly blocked. These events are associated with the cleavage of the N-terminal region (NTR) of glycoprotein ZP2, a major subunit of ZP filaments. ZP2 processing is thought to inactivate sperm binding to the ZP, but its molecular consequences and connection with ZP hardening are unknown. Biochemical and structural studies show that cleavage of ZP2 triggers its oligomerization. Moreover, the structure of a native vertebrate egg coat filament, combined with AlphaFold predictions of human ZP polymers, reveals that two protofilaments consisting of type I (ZP3) and type II (ZP1/ZP2/ZP4) components interlock into a left-handed double helix from which the NTRs of type II subunits protrude. Together, these data suggest that oligomerization of cleaved ZP2 NTRs extensively cross-links ZP filaments, rigidifying the egg coat and making it physically impenetrable to sperm.


Asunto(s)
Glicoproteínas de la Zona Pelúcida , Humanos , Masculino , Semen , Espermatozoides/química , Espermatozoides/metabolismo , Zona Pelúcida/química , Zona Pelúcida/metabolismo , Glicoproteínas de la Zona Pelúcida/química , Glicoproteínas de la Zona Pelúcida/metabolismo , Óvulo/química , Óvulo/metabolismo , Femenino
2.
Commun Biol ; 7(1): 16, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177279

RESUMEN

In mammals, females undergo reproductive cessation with age, whereas male fertility gradually declines but persists almost throughout life. However, the detailed effects of ageing on germ cells during and after spermatogenesis, in the testis and epididymis, respectively, remain unclear. Here we comprehensively examined the in vivo male fertility and the overall organization of the testis and epididymis with age, focusing on spermatogenesis, and sperm function and fertility, in mice. We first found that in vivo male fertility decreased with age, which is independent of mating behaviors and testosterone levels. Second, overall sperm production in aged testes was decreased; about 20% of seminiferous tubules showed abnormalities such as germ cell depletion, sperm release failure, and perturbed germ cell associations, and the remaining 80% of tubules contained lower number of germ cells because of decreased proliferation of spermatogonia. Further, the spermatozoa in aged epididymides exhibited decreased total cell numbers, abnormal morphology/structure, decreased motility, and DNA damage, resulting in low fertilizing and developmental rates. We conclude that these multiple ageing effects on germ cells lead to decreased in vivo male fertility. Our present findings are useful to better understand the basic mechanism behind the ageing effect on male fertility in mammals including humans.


Asunto(s)
Epidídimo , Testículo , Animales , Masculino , Ratones , Envejecimiento , Fertilidad , Mamíferos , Semen , Espermatogonias
3.
J Reprod Dev ; 70(1): 10-17, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38057116

RESUMEN

Poly(A)-binding proteins (PABPs) play roles in mRNA maturation, translational activity, and decay. The functions of PABPs, especially PABPN1 and PABPC1, in somatic cells have been well-studied. However, little is known about the roles of PABPs in oocytes because of the unique mechanisms of mRNA metabolism in oocytes. This study focused on PABPN1L and generated Pabpn1l knockout (KO) mice using the CRISPR/Cas9 system. After mating tests, we found that Pabpn1l KO females were infertile due to the failure of the embryos to develop to the 4-cell stage. RNA-seq analysis revealed aberrant mRNA persistence in Pabpn1l KO-MII oocytes, which indicates impaired mRNA degradation during the germinal vesicle (GV) to MII transition. We also revealed that the exogenous expression of Pabpn1l mRNA in KO-GV oocytes recovered defects of embryonic development. PABPN1L is partly indispensable for female fertility in mice, owing to its necessity for embryonic development, which is supported by mRNA degradation during GV to MII maturation.


Asunto(s)
Oocitos , ARN Mensajero Almacenado , Embarazo , Femenino , Animales , Ratones , ARN Mensajero Almacenado/metabolismo , Oocitos/metabolismo , Meiosis , ARN Mensajero/metabolismo , Estabilidad del ARN
4.
Nat Commun ; 14(1): 2354, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095084

RESUMEN

The mammalian spermatozoa produced in the testis require functional maturation in the epididymis for their full competence. Epididymal sperm maturation is regulated by lumicrine signalling pathways in which testis-derived secreted signals relocate to the epididymis lumen and promote functional differentiation. However, the detailed mechanisms of lumicrine regulation are unclear. Herein, we demonstrate that a small secreted protein, NELL2-interacting cofactor for lumicrine signalling (NICOL), plays a crucial role in lumicrine signalling in mice. NICOL is expressed in male reproductive organs, including the testis, and forms a complex with the testis-secreted protein NELL2, which is transported transluminally from the testis to the epididymis. Males lacking Nicol are sterile due to impaired NELL2-mediated lumicrine signalling, leading to defective epididymal differentiation and deficient sperm maturation but can be restored by NICOL expression in testicular germ cells. Our results demonstrate how lumicrine signalling regulates epididymal function for successful sperm maturation and male fertility.


Asunto(s)
Semen , Maduración del Esperma , Masculino , Ratones , Animales , Testículo/metabolismo , Epidídimo/metabolismo , Espermatozoides/metabolismo , Fertilidad , Mamíferos
5.
Commun Biol ; 5(1): 332, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393517

RESUMEN

The process of sperm-egg fusion is critical for successful fertilization, yet the underlying mechanisms that regulate these steps have remained unclear in vertebrates. Here, we show that both mouse and zebrafish DCST1 and DCST2 are necessary in sperm to fertilize the egg, similar to their orthologs SPE-42 and SPE-49 in C. elegans and Sneaky in D. melanogaster. Mouse Dcst1 and Dcst2 single knockout (KO) sperm are able to undergo the acrosome reaction and show normal relocalization of IZUMO1, an essential factor for sperm-egg fusion, to the equatorial segment. While both single KO sperm can bind to the oolemma, they show the fusion defect, resulting that Dcst1 KO males become almost sterile and Dcst2 KO males become sterile. Similar to mice, zebrafish dcst1 KO males are subfertile and dcst2 and dcst1/2 double KO males are sterile. Zebrafish dcst1/2 KO sperm are motile and can approach the egg, but are defective in binding to the oolemma. Furthermore, we find that DCST1 and DCST2 interact with each other and are interdependent. These data demonstrate that DCST1/2 are essential for male fertility in two vertebrate species, highlighting their crucial role as conserved factors in fertilization.


Asunto(s)
Interacciones Espermatozoide-Óvulo , Pez Cebra , Animales , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Espermatozoides/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
6.
Science ; 368(6495): 1132-1135, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32499443

RESUMEN

The lumicrine system is a postulated signaling system in which testis-derived (upstream) secreted factors enter the male reproductive tract to regulate epididymal (downstream) pathways required for sperm maturation. Until now, no lumicrine factors have been identified. We demonstrate that a testicular germ-cell-secreted epidermal growth factor-like protein, neural epidermal growth factor-like-like 2 (NELL2), specifically binds to an orphan receptor tyrosine kinase, c-ros oncogene 1 (ROS1), and mediates the differentiation of the initial segment (IS) of the caput epididymis. Male mice in which Nell2 had been knocked out were infertile. The IS-specific secreted proteases, ovochymase 2 (OVCH2) and A disintegrin and metallopeptidase 28 (ADAM28), were expressed upon IS maturation, and OVCH2 was required for processing of the sperm surface protein ADAM3, which is required for sperm fertilizing ability. This work identifies a lumicrine system essential for testis-epididymis-spermatozoa (NELL2-ROS1-OVCH2-ADAM3) signaling and male fertility.


Asunto(s)
Comunicación Celular/fisiología , Endopeptidasas/metabolismo , Epidídimo/metabolismo , Fertilidad , Infertilidad Masculina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Proteínas ADAM/metabolismo , Animales , Comunicación Celular/genética , Endopeptidasas/genética , Infertilidad Masculina/genética , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo
7.
Cells ; 9(4)2020 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-32231122

RESUMEN

There are over 200 genes that are predicted to be solely expressed in the oocyte and ovary, and thousands more that have expression patterns in the female reproductive tract. Unfortunately, many of their physiological functions, such as their roles in oogenesis or fertilization, have yet to be elucidated. Previous knockout (KO) mice studies have proven that many of the genes that were once thought to be essential for fertility are dispensable in vivo. Therefore, it is extremely important to confirm the roles of all genes before spending immense time studying them in vitro. To do this, our laboratory analyzes the functions of ovary and oocyte-enriched genes in vivo through generating CRISPR/Cas9 KO mice and examining their fertility. In this study, we have knocked out three Oosp family genes (Oosp1, Oosp2, and Oosp3) that have expression patterns linked to the female reproductive system and found that the triple KO (TKO) mutant mice generated exhibited decreased prolificacy but were not infertile; thus, these genes may potentially be dispensable for fertility. We also generated Cd160 and Egfl6 KO mice and found these genes are individually dispensable for female fertility. KO mice with no phenotypic data are seldom published, but we believe that this information must be shared to prevent unnecessary experimentation by other laboratories.


Asunto(s)
Sistemas CRISPR-Cas/genética , Fertilidad/fisiología , Edición Génica , Familia de Multigenes , Proteínas Gestacionales/metabolismo , Secuencia de Aminoácidos , Animales , Simulación por Computador , Secuencia Conservada , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones Noqueados , Ratones Mutantes , Ovario/metabolismo , Fenotipo , Proteínas Gestacionales/química , Proteínas Gestacionales/genética
8.
Exp Anim ; 69(1): 104-109, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31554749

RESUMEN

QBRICK, FRAS1, and FREM2 compose a family of extracellular matrix proteins characterized by twelve consecutive CSPG repeats and single or multiple Calx-ß motifs. Dysfunction of these proteins have been associated with Fraser syndrome, which is characterized by malformation of skin, eyes, digits, and kidneys. FREM3 is another member of the 12-CSPG protein family. However, it remains unknown whether genetic dysfunction of FREM3 also causes Fraser syndrome or another developmental disorder. Here we investigated a Frem3 mutant mouse line generated by CRISPR/Cas9-mediated genome editing. The FREM3 mutant homozygotes were born at the expected Mendelian ratio and did not possess any defects characteristic of Fraser syndrome. These results indicate that the dysfunction of FREM3 is not associated with Fraser syndrome.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Síndrome de Fraser/genética , Mutación , Animales , Proteínas de la Matriz Extracelular/metabolismo , Síndrome de Fraser/patología , Ratones
9.
Biol Reprod ; 101(2): 501-511, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31201419

RESUMEN

More than 1000 genes are predicted to be predominantly expressed in mouse testis, yet many of them remain unstudied in terms of their roles in spermatogenesis and sperm function and their essentiality in male reproduction. Since individually indispensable factors can provide important implications for the diagnosis of genetically related idiopathic male infertility and may serve as candidate targets for the development of nonhormonal male contraceptives, our laboratories continuously analyze the functions of testis-enriched genes in vivo by generating knockout mouse lines using the CRISPR/Cas9 system. The dispensability of genes in male reproduction is easily determined by examining the fecundity of knockout males. During our large-scale screening of essential factors, we knocked out 30 genes that have a strong bias of expression in the testis and are mostly conserved in mammalian species including human. Fertility tests reveal that the mutant males exhibited normal fecundity, suggesting these genes are individually dispensable for male reproduction. Since such functionally redundant genes are of diminished biological and clinical significance, we believe that it is crucial to disseminate this list of genes, along with their phenotypic information, to the scientific community to avoid unnecessary expenditure of time and research funds and duplication of efforts by other laboratories.


Asunto(s)
Sistemas CRISPR-Cas , Fertilidad/genética , Edición Génica , Regulación de la Expresión Génica/fisiología , Testículo/metabolismo , Animales , Humanos , Infertilidad Masculina/genética , Masculino , Ratones , Ratones Noqueados , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA