Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Med Phys ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012833

RESUMEN

BACKGROUND: Computed tomography (CT) relies on the attenuation of x-rays, and is, hence, of limited use for weakly attenuating organs of the body, such as the lung. X-ray dark-field (DF) imaging is a recently developed technology that utilizes x-ray optical gratings to enable small-angle scattering as an alternative contrast mechanism. The DF signal provides structural information about the micromorphology of an object, complementary to the conventional attenuation signal. A first human-scale x-ray DF CT has been developed by our group. Despite specialized processing algorithms, reconstructed images remain affected by streaking artifacts, which often hinder image interpretation. In recent years, convolutional neural networks have gained popularity in the field of CT reconstruction, amongst others for streak artefact removal. PURPOSE: Reducing streak artifacts is essential for the optimization of image quality in DF CT, and artefact free images are a prerequisite for potential future clinical application. The purpose of this paper is to demonstrate the feasibility of CNN post-processing for artefact reduction in x-ray DF CT and how multi-rotation scans can serve as a pathway for training data. METHODS: We employed a supervised deep-learning approach using a three-dimensional dual-frame UNet in order to remove streak artifacts. Required training data were obtained from the experimental x-ray DF CT prototype at our institute. Two different operating modes were used to generate input and corresponding ground truth data sets. Clinically relevant scans at dose-compatible radiation levels were used as input data, and extended scans with substantially fewer artifacts were used as ground truth data. The latter is neither dose-, nor time-compatible and, therefore, unfeasible for clinical imaging of patients. RESULTS: The trained CNN was able to greatly reduce streak artifacts in DF CT images. The network was tested against images with entirely different, previously unseen image characteristics. In all cases, CNN processing substantially increased the image quality, which was quantitatively confirmed by increased image quality metrics. Fine details are preserved during processing, despite the output images appearing smoother than the ground truth images. CONCLUSIONS: Our results showcase the potential of a neural network to reduce streak artifacts in x-ray DF CT. The image quality is successfully enhanced in dose-compatible x-ray DF CT, which plays an essential role for the adoption of x-ray DF CT into modern clinical radiology.

2.
IEEE Trans Med Imaging ; PP2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739509

RESUMEN

X-ray computed tomography (CT) is a crucial tool for non-invasive medical diagnosis that uses differences in materials' attenuation coefficients to generate contrast and provide 3D information. Grating-based dark-field-contrast X-ray imaging is an innovative technique that utilizes small-angle scattering to generate additional co-registered images with additional microstructural information. While it is already possible to perform human chest dark-field radiography, it is assumed that its diagnostic value increases when performed in a tomographic setup. However, the susceptibility of Talbot-Lau interferometers to mechanical vibrations coupled with a need to minimize data acquisition times has hindered its application in clinical routines and the combination of X-ray dark-field imaging and large field-of-view (FOV) tomography in the past. In this work, we propose a processing pipeline to address this issue in a human-sized clinical dark-field CT prototype. We present the corrective measures that are applied in the employed processing and reconstruction algorithms to mitigate the effects of vibrations and deformations of the interferometer gratings. This is achieved by identifying spatially and temporally variable vibrations in air reference scans. By translating the found correlations to the sample scan, we can identify and mitigate relevant fluctuation modes for scans with arbitrary sample sizes. This approach effectively eliminates the requirement for sample-free detector area, while still distinctly separating fluctuation and sample information. As a result, samples of arbitrary dimensions can be reconstructed without being affected by vibration artifacts. To demonstrate the viability of the technique for human-scale objects, we present reconstructions of an anthropomorphic thorax phantom.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38803525

RESUMEN

Spectral computed tomography (CT) is a powerful diagnostic tool offering quantitative material decomposition results that enhance clinical imaging by providing physiologic and functional insights. Iodine, a widely used contrast agent, improves visualization in various clinical contexts. However, accurately detecting low-concentration iodine presents challenges in spectral CT systems, particularly crucial for conditions like pancreatic cancer assessment. In this study, we present preliminary results from our hybrid spectral CT instrumentation which includes clinical-grade hardware (rapid kVp-switching x-ray tube, dual-layer detector). This combination expands spectral datasets from two to four channels, wherein we hypothesize improved quantification accuracy for low-dose and low-iodine concentration cases. We modulate the system duty cycle to evaluate its impact on quantification noise and bias. We evaluate iodine quantification performance by comparing two hybrid weighting strategies alongside rapid kVp-switching. This evaluation is performed with a polyamide phantom containing seven iodine inserts ranging from 0.5 to 20 mg/mL. In comparison to alternative methodologies, the maximum separation configuration, incorporating data from both the 80 kVp, low photon energy detector layer and the 140 kVp, high photon energy detector layer produces spectral images containing low quantitative noise and bias. This study presents initial evaluations on a hybrid spectral CT system, leveraging clinical hardware to demonstrate the potential for enhanced precision and sensitivity in spectral imaging. This research holds promise for advancing spectral CT imaging performance across diverse clinical scenarios.

4.
IEEE Trans Med Imaging ; 43(7): 2646-2656, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38451749

RESUMEN

Dark-field radiography, a new X-ray imaging method, has recently been applied to human chest imaging for the first time. It employs conventional X-ray devices in combination with a Talbot-Lau interferometer with a large field of view, providing both attenuation and dark-field radiographs. It is well known that sample scatter creates artifacts in both modalities. Here, we demonstrate that also X-ray scatter generated by the interferometer as well as detector crosstalk create artifacts in the dark-field radiographs, in addition to the expected loss of spatial resolution. We propose deconvolution-based correction methods for the induced artifacts. The kernel for detector crosstalk is measured and fitted to a model, while the kernel for scatter from the analyzer grating is calculated by a Monte-Carlo simulation. To correct for scatter from the sample, we adapt an algorithm used for scatter correction in conventional radiography. We validate the obtained corrections with a water phantom. Finally, we show the impact of detector crosstalk, scatter from the analyzer grating and scatter from the sample and their successful correction on dark-field images of a human thorax.


Asunto(s)
Algoritmos , Artefactos , Fantasmas de Imagen , Dispersión de Radiación , Humanos , Método de Montecarlo , Radiografía Torácica/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Interferometría/métodos , Interferometría/instrumentación , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...