Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Emerg Microbes Infect ; 13(1): 2321992, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38484290

RESUMEN

Tick-borne encephalitis virus (TBEV) is an emerging pathogen in the Netherlands. Multiple divergent viral strains are circulating and the focal distribution of TBEV remains poorly understood. This may, however, be explained by differences in the susceptibility of tick populations for specific viruses and viral strains, and by viral strains having higher infection success in their local tick population. We investigated this hypothesis by exposing Dutch Ixodes ricinus ticks to two different TBEV strains: TBEV-NL from the Netherlands and TBEV-Neudoerfl from Austria. In addition, we exposed ticks to louping Ill virus (LIV), which is endemic to large parts of the United Kingdom and Ireland, but has not been reported in the Netherlands. Ticks were collected from two locations in the Netherlands: one location without evidence of TBEV circulation and one location endemic for the TBEV-NL strain. Ticks were infected in a biosafety level 3 laboratory using an artificial membrane feeding system. Ticks collected from the region without evidence of TBEV circulation had lower infection rates for TBEV-NL as compared to TBEV-Neudoerfl. Vice versa, ticks collected from the TBEV-NL endemic region had higher infection rates for TBEV-NL compared to TBEV-Neudoerfl. In addition, LIV infection rates were much lower in Dutch ticks compared to TBEV, which may explain why LIV is not present in the Netherlands. Our findings show that ticks from two distinct geographical populations differ in their susceptibility to TBEV strains, which could be the result of differences in the genetic background of the tick populations.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Ixodes , Animales , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/epidemiología , Países Bajos/epidemiología , Austria
2.
Parasit Vectors ; 17(1): 95, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424573

RESUMEN

BACKGROUND: Culex pipiens sensu stricto (s.s.) is considered the primary vector of Usutu virus and West Nile virus, and consists of two morphologically identical but behaviourally distinct biotypes (Cx. pipiens biotype pipiens and Cx. pipiens biotype molestus) and their hybrids. Both biotypes are expected to differ in their feeding behaviour, and pipiens/molestus hybrids are presumed to display intermediate feeding behaviour. However, the evidence for distinct feeding patterns is scarce, and to date no studies have related differences in feeding patterns to differences in host abundance. METHODS: Mosquitoes were collected using CO2-baited traps. We collected blood-engorged Cx. pipiens/torrentium specimens from 12 contrasting urban sites, namely six city parks and six residential areas. Blood engorged Cx. pipiens/torrentium mosquitoes were identified to the species and biotype/hybrid level via real-time polymerase chain reaction (PCR). We performed blood meal analysis via PCR and Sanger sequencing. Additionally, avian host communities were surveyed via vocal sounds and/or visual observation. RESULTS: We selected 64 blood-engorged Cx. pipiens/torrentium mosquitoes of which we successfully determined the host origin of 55 specimens. Of these, 38 belonged to biotype pipiens, 14 were pipiens/molestus hybrids and the identity of three specimens could not be determined. No blood-engorged biotype molestus or Cx. torrentium specimens were collected. We observed no differences in feeding patterns between biotype pipiens and pipiens/molestus hybrids across different habitats. Avian community composition differed between city parks and residential areas, whereas overall avian abundance did not differ between the two habitat types. CONCLUSIONS: Our results show the following: (1) Cx. pipiens s.s. feeding patterns did not differ between city parks and residential areas, regardless of whether individuals were identified as biotype pipiens or pipiens/molestus hybrids. (2) We detected differences in host availability between city parks and residential areas. (3) We show that in both urban habitat types, biotype pipiens and pipiens/molestus hybrids fed on both mammalian and avian hosts. This underscores the potential role in arbovirus transmission of biotype pipiens and pipiens/molestus hybrids.


Asunto(s)
Culex , Culicidae , Humanos , Animales , Mosquitos Vectores/genética , Culex/genética , Ecosistema , Conducta Alimentaria , Mamíferos
3.
Ticks Tick Borne Dis ; 15(1): 102266, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37813003

RESUMEN

Ticks and the microbes they transmit have emerged in sub-Saharan Africa as a major threat to veterinary and public health. Although progress has been made in detecting and identifying tick-borne pathogens (TBPs) across vast agroecologies of Kenya, comprehensive information on tick species infesting cattle and their associated pathogens in coastal Kenya needs to be updated and expanded. Ticks infesting extensively grazed zebu cattle in 14 villages were sampled and identified based on morphology and molecular methods and tested for the presence of bacterial and protozoan TBPs using PCR with high-resolution melting analysis and gene sequencing. In total, 3,213 adult ticks were collected and identified as Rhipicephalus appendiculatus (15.8%), R. evertsi (12.8%), R. microplus (11.3%), R. pulchellus (0.1%), Amblyomma gemma (24.1%), A. variegatum (35.1%), Hyalomma rufipes (0.6%), and H. albiparmatum (0.2%). Ticks were infected with Rickettsia africae, Ehrlichia ruminantium, E. minasensis, Theileria velifera and T. parva. Coxiella sp. endosymbionts were detected in the Rhipicephalus and Amblyomma ticks. Co-infections with two and three different pathogens were identified in 6.9% (n = 95/1382) and 0.1% (n = 2/1382) of single tick samples, respectively, with the most common co-infection being R. africae and E. ruminantium (7.2%, CI: 4.6 - 10.6). All samples were negative for Coxiella burnetii, Anaplasma spp. and Babesia spp. Our study provides an overview of tick and tick-borne microbial diversities in coastal Kenya.


Asunto(s)
Enfermedades de los Bovinos , Ixodidae , Rhipicephalus , Rickettsia , Infestaciones por Garrapatas , Enfermedades por Picaduras de Garrapatas , Animales , Bovinos , Ixodidae/microbiología , Kenia/epidemiología , Infestaciones por Garrapatas/epidemiología , Infestaciones por Garrapatas/veterinaria , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/microbiología , Amblyomma , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/veterinaria , Enfermedades por Picaduras de Garrapatas/microbiología
4.
Sci Rep ; 13(1): 21627, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062065

RESUMEN

The distribution of tick-borne encephalitis virus (TBEV) is expanding to Western European countries, including the Netherlands, but the contribution of different rodent species to the transmission of TBEV is poorly understood. We investigated whether two species of wild rodents native to the Netherlands, the wood mouse Apodemus sylvaticus and the yellow-necked mouse Apodemus flavicollis, differ in their relative susceptibility to experimental infection with TBEV. Wild-caught individuals were inoculated subcutaneously with the classical European subtype of TBEV (Neudoerfl) or with TBEV-NL, a genetically divergent TBEV strain from the Netherlands. Mice were euthanised and necropsied between 3 and 21 days post-inoculation. None of the mice showed clinical signs or died during the experimental period. Nevertheless, TBEV RNA was detected up to 21 days in the blood of both mouse species and TBEV was also isolated from the brain of some mice. Moreover, no differences in infection rates between virus strains and mouse species were found in blood, spleen, or liver samples. Our results suggest that the wood mouse and the yellow-necked mouse may equally contribute to the transmission cycle of TBEV in the Netherlands. Future experimental infection studies that include feeding ticks will help elucidate the relative importance of viraemic transmission in the epidemiology of TBEV.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Garrapatas , Animales , Ratones , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/epidemiología , Encefalitis Transmitida por Garrapatas/veterinaria , Murinae , Países Bajos
5.
Parasit Vectors ; 16(1): 443, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38017525

RESUMEN

BACKGROUND: Ixodes ricinus ticks are infected with a large diversity of vertically and horizontally transmitted symbionts. While horizontally transmitted symbionts rely on a vertebrate host for their transmission, vertically transmitted symbionts rely more on the survival of their invertebrate host for transmission. We therefore hypothesized horizontally transmitted symbionts to be associated with increased tick activity to increase host contact rate and vertically transmitted symbionts to be associated with higher tick weight and lipid fraction to promote tick survival. METHODS: We used a behavioural assay to record the questing activity of I. ricinus ticks. In addition, we measured weight and lipid fraction and determined the presence of ten symbiont species in these ticks using qPCR, of which six were vertically transmitted and four horizontally transmitted. RESULTS: Vertically transmitted symbionts (e.g. Midichloria mitochondrii) were associated with an increase in tick weight, whereas horizontally transmitted symbionts (e.g. Borrelia burgdorferi sensu lato) were often associated with lower weight and lipid fraction of ticks. Moreover, horizontally transmitted symbionts (e.g. B. burgdorferi s.l.) were associated with increased tick activity, which may benefit pathogen transmission and increases tick-borne disease hazard. CONCLUSIONS: Our study shows that horizontally and vertically transmitted symbionts differentially influence the behaviour and physiology of I. ricinus and warrants future research to study the underlying mechanisms and effects on transmission dynamics of tick-borne pathogens.


Asunto(s)
Borrelia burgdorferi , Ixodes , Enfermedades por Picaduras de Garrapatas , Animales , Ixodes/fisiología , Lípidos
6.
Virus Evol ; 9(2): vead041, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37636319

RESUMEN

The Asian bush mosquito Aedes japonicus is rapidly invading North America and Europe. Due to its potential to transmit multiple pathogenic arthropod-borne (arbo)viruses including Zika virus, West Nile virus, and chikungunya virus, it is important to understand the biology of this vector mosquito in more detail. In addition to arboviruses, mosquitoes can also carry insect-specific viruses that are receiving increasing attention due to their potential effects on host physiology and arbovirus transmission. In this study, we characterized the collection of viruses, referred to as the virome, circulating in Ae. japonicus populations in the Netherlands and France. Applying a small RNA-based metagenomic approach to Ae. japonicus, we uncovered a distinct group of viruses present in samples from both the Netherlands and France. These included one known virus, Ae. japonicus narnavirus 1 (AejapNV1), and three new virus species that we named Ae. japonicus totivirus 1 (AejapTV1), Ae. japonicus anphevirus 1 (AejapAV1) and Ae. japonicus bunyavirus 1 (AejapBV1). We also discovered sequences that were presumably derived from two additional novel viruses: Ae. japonicus bunyavirus 2 (AejapBV2) and Ae. japonicus rhabdovirus 1 (AejapRV1). All six viruses induced strong RNA interference responses, including the production of twenty-one nucleotide-sized small interfering RNAs, a signature of active replication in the host. Notably, AejapBV1 and AejapBV2 belong to different viral families; however, no RNA-dependent RNA polymerase sequence has been found for AejapBV2. Intriguingly, our small RNA-based approach identified an ∼1-kb long ambigrammatic RNA that is associated with AejapNV1 as a secondary segment but showed no similarity to any sequence in public databases. We confirmed the presence of AejapNV1 primary and secondary segments, AejapTV1, AejapAV1, and AejapBV1 by reverse transcriptase polymerase chain reaction (PCR) in wild-caught Ae. japonicus mosquitoes. AejapNV1 and AejapTV1 were found at high prevalence (87-100 per cent) in adult females, adult males, and larvae. Using a small RNA-based, sequence-independent metagenomic strategy, we uncovered a conserved and prevalent virome among Ae. japonicus mosquito populations. The high prevalence of AejapNV1 and AejapTV1 across all tested mosquito life stages suggests that these viruses are intimately associated with Ae. japonicus.

7.
One Health ; 17: 100589, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37415720

RESUMEN

The incidence and risk of mosquito-borne disease outbreaks in Northwestern Europe has increased over the last few decades. Understanding the underlying environmental drivers of mosquito population dynamics helps to adequately assess mosquito-borne disease risk. While previous studies have focussed primarily on the effects of climatic conditions (i.e., temperature and precipitation) and/or local environmental conditions individually, it remains unclear how climatic conditions interact with local environmental factors such as land use and soil type, and how these subsequently affect mosquito abundance. Here, we set out to study the interactive effects of land use, soil type and climatic conditions on the abundance of Culex pipiens/torrentium, highly abundant vectors of West Nile virus and Usutu virus. Mosquitoes were sampled at 14 sites throughout the Netherlands. At each site, weekly mosquito collections were carried out between early July and mid-October 2020 and 2021. To assess the effect of the aforementioned environmental factors, we performed a series of generalized linear mixed models and non-parametric statistical tests. Our results show that mosquito abundance and species richness consistently differ among land use- and soil types, with peri-urban areas with peat/clay soils having the highest Cx. pipiens/torrentium abundance and sandy rural areas having the lowest. Furthermore, we observed differences in precipitation-mediated effects on Cx. pipiens/torrentium abundance between (peri-)urban and other land uses and soil types. In contrast, effects of temperature on Cx. pipiens/torrentium abundance remain similar between different land use and soil types. Our study highlights the importance of both land use and soil type in conjunction with climatic conditions for understanding mosquito abundances. Particularly in relation to rainfall events, land use and soil type has a marked effect on mosquito abundance. These findings underscore the importance of local environmental parameters for studies focusing on predicting or mitigating disease risk.

8.
One Health ; 16: 100506, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37363242

RESUMEN

Due to changes in climate, numerous mosquito species are continuously extending their geographical distributions, posing potential new public health threats as arbovirus infections emerge in these new areas. During probing and feeding on the vertebrate host, a mosquito can inject both arbovirus and saliva into the skin of the host. The presence of mosquito saliva in the host skin during arbovirus transmission contributes to high viral titers in the skin, enhanced viremia, and rapid dissemination of the virus to target organs. This enhanced phenotype effectuated by the presence of mosquito saliva in the skin can be partly ascribed to a polarization of the local immune balance towards a Th2 response, an increased permeability of the dermal endothelium, and the influx of virus-susceptible immune cells to the bite site. However, the complete identification and characterization of immunomodulatory salivary proteins from different mosquito species and the mechanisms by which these salivary proteins exert their effects synergistically or antagonistically remains to be further explored. Moreover, the effect of new virus-vector combinations on the outcome of arbovirus infection in a new host is limited. Here, we review the immunomodulatory effects of mosquito saliva in the skin and the proposed mechanisms by which mosquito saliva enhances arbovirus pathogenesis in the vertebrate host, and discuss potential differences between Aedes and Culex mosquito species, the main vectors for medically important arboviruses. Gaining more insight into the effect of mosquito saliva in the vector-virus-host triad aids in predicting the potential transmission risk and disease severity of emerging vector-borne diseases.

9.
Front Microbiol ; 14: 1195621, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293213

RESUMEN

Usutu virus (USUV) is a mosquito-borne flavivirus of African origin. Over the past decades, USUV has spread through Europe causing mass die-offs among multiple bird species. The natural transmission cycle of USUV involves Culex spp. mosquitoes as vectors and birds as amplifying hosts. Next to birds and mosquitoes, USUV has also been isolated from multiple mammalian species, including humans, which are considered dead-end hosts. USUV isolates are phylogenetically classified into an African and European branch, subdivided into eight genetic lineages (Africa 1, 2, and 3 and Europe 1, 2, 3, 4, and 5 lineages). Currently, multiple African and European lineages are co-circulating in Europe. Despite increased knowledge of the epidemiology and pathogenicity of the different lineages, the effects of co-infection and transmission efficacy of the co-circulating USUV strains remain unclear. In this study, we report a comparative study between two USUV isolates as follows: a Dutch isolate (USUV-NL, Africa lineage 3) and an Italian isolate (USUV-IT, Europe lineage 2). Upon co-infection, USUV-NL was consistently outcompeted by USUV-IT in mosquito, mammalian, and avian cell lines. In mosquito cells, the fitness advantage of USUV-IT was most prominently observed in comparison to the mammalian or avian cell lines. When Culex pipiens mosquitoes were orally infected with the different isolates, no overall differences in vector competence for USUV-IT and USUV-NL were observed. However, during the in vivo co-infection assay, it was observed that USUV-NL infectivity and transmission were negatively affected by USUV-IT but not vice versa.

10.
Trends Parasitol ; 39(7): 575-587, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37230833

RESUMEN

Female mosquitoes require blood from their host for egg development. However, the relationship between the composition of host blood and mosquito reproduction, and whether and how this is linked to host selection, remain unclear. A better understanding of these issues is beneficial for mass-rearing of mosquitoes for vector control. This review provides an overview of the currently known effects of blood constituents on mosquito reproduction. Furthermore, it highlights knowledge gaps and proposes new avenues for investigation. We recommend that research efforts be focused on physiological differences between generalist and specialist mosquito species as models to investigate if and how host preference correlates with reproductive output.


Asunto(s)
Anopheles , Mosquitos Vectores , Animales , Femenino , Mosquitos Vectores/fisiología , Reproducción , Anopheles/fisiología
11.
Parasit Vectors ; 16(1): 103, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927723

RESUMEN

BACKGROUND: Tick-borne encephalitis virus (TBEV) can cause severe neurological disease in humans. Its geographical distribution is expanding in Western Europe with unresolved causes and spatial patterns, necessitating enhanced surveillance. Monitoring the virus in the environment is complicated, as it usually relies on destructive sampling of small rodents to test organs for TBEV, which in addition to ethical considerations also raises issues for long-term monitoring or longitudinal studies. Moreover, even when the virus is not detected in the blood or organs of the rodent, TBEV can still be transmitted from an infected tick to uninfected ticks feeding nearby. This is due to the ability of TBEV to replicate and migrate locally within the epidermis of small mammals, including those that do not appear to have systemic infection. This suggests that the virus may be detectable in skin biopsies, which has been confirmed in experimentally infected laboratory rodents, but it remains unknown if this sample type may be a viable alternative to destructively obtained samples in the monitoring of natural TBEV infection. Here we test ear tissue and dried blood spot (DBS) samples from rodents to determine whether TBEV-RNA can be detected in biological samples obtained non-destructively. METHODS: Rodents were live-trapped and sampled at three woodland areas in The Netherlands where presence of TBEV has previously been recorded. Ear tissue (n = 79) and DBSs (n = 112) were collected from a total of 117 individuals and were tested for TBEV-RNA by real-time RT-PCR. RESULTS: TBEV-RNA was detected in five rodents (4.3% of tested individuals), all of which had a TBEV-positive ear sample, while only two out of four of these individuals (for which a DBS was available) had a positive DBS. This equated to 6.3% of ear samples and 1.8% of DBSs testing positive for TBEV-RNA. CONCLUSIONS: We provide the first evidence to our knowledge that TBEV-RNA can be detected in samples obtained non-destructively from naturally infected wild rodents, providing a viable sampling alternative suitable for longitudinal surveillance of the virus.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Garrapatas , Humanos , Animales , Roedores , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/diagnóstico , Encefalitis Transmitida por Garrapatas/veterinaria , Encefalitis Transmitida por Garrapatas/epidemiología , Garrapatas/genética , Mamíferos/genética , ARN
12.
Nat Microbiol ; 8(1): 135-149, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36604511

RESUMEN

Aedes aegypti and A. albopictus mosquitoes are the main vectors for dengue virus (DENV) and other arboviruses, including Zika virus (ZIKV). Understanding the factors that affect transmission of arboviruses from mosquitoes to humans is a priority because it could inform public health and targeted interventions. Reasoning that interactions among viruses in the vector insect might affect transmission, we analysed the viromes of 815 urban Aedes mosquitoes collected from 12 countries worldwide. Two mosquito-specific viruses, Phasi Charoen-like virus (PCLV) and Humaita Tubiacanga virus (HTV), were the most abundant in A. aegypti worldwide. Spatiotemporal analyses of virus circulation in an endemic urban area revealed a 200% increase in chances of having DENV in wild A. aegypti mosquitoes when both HTV and PCLV were present. Using a mouse model in the laboratory, we showed that the presence of HTV and PCLV increased the ability of mosquitoes to transmit DENV and ZIKV to a vertebrate host. By transcriptomic analysis, we found that in DENV-infected mosquitoes, HTV and PCLV block the downregulation of histone H4, which we identify as an important proviral host factor in vivo.


Asunto(s)
Aedes , Arbovirus , Virus del Dengue , Dengue , Virus de Insectos , Virus ARN , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Virus Zika/genética , Virus de Insectos/fisiología , Virus del Dengue/genética , Mosquitos Vectores , Arbovirus/genética
13.
J Health Popul Nutr ; 42(1): 6, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36691108

RESUMEN

BACKGROUND: Evidence suggests a vicious cycle between rice cultivation and malaria control in Rwanda. Rice fields offer an attractive breeding ground for malaria vectors, which increases the disease burden in rice farming communities, and, consequently, reduces productivity in the rice sector. Community-based larval source management in rice fields is propagated as a sustainable solution to break this cycle. A sense of agency and ownership of malaria control interventions, as well as the mobilization of resources at the local level, are often considered preconditions for success. However, an evidence gap exists regarding the interaction between the agentive and financial dimension of local sustainability. METHODS: We conduct a larviciding pilot involving three groups; one group where rice farmers sprayed their fields under expert supervision, one group where rice farmers organised the larviciding campaign themselves, and a (non-sprayed) control group. We test whether the difference in agency between the intervention groups affects farmers' willingness-to-pay for a larviciding campaign. Willingness-to-pay is elicited in a contingent valuation exercise, more specifically a bidding game, and is assessed both before and after the pilot (n = 288). Difference-in-difference estimates are computed, using a propensity score matching technique. Supplementary data were collected in a survey and two focus group discussions for triangulation. RESULTS: The high-agency (self-organised) group significantly outperforms the low-agency (expert-supervised) group in terms of maintaining its willingness to contribute financially. However, higher willingness-to-pay in the high-agency group does not appear to be driven by a stronger sense of ownership per se. The supplementary data indicate high levels of ownership in both treatment groups compared to the control group. A tentative explanation lies in diverging perceptions concerning the effectiveness of the pilot. CONCLUSIONS: The study supports the idea that community-led organization of larval source management can prove instrumental in mobilizing finance for malaria control in low-income settings where rice production interferes with the fight against malaria. However, the causality is complex. Feelings of ownership do not appear the main driver of willingness-to-pay, at least not directly, which opens up the possibility of initiating community-driven malaria control interventions that promote the agentive and financial dimension of local sustainability simultaneously.


Asunto(s)
Anopheles , Malaria , Oryza , Animales , Humanos , Control de Mosquitos/métodos , Proyectos Piloto , Rwanda , Agricultores , Propiedad , Mosquitos Vectores
14.
One Health ; 16: 100467, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36531660

RESUMEN

In some areas in temperate Europe, genomic analyses of mosquito-borne virus outbreaks have revealed the presence of similar virus strains over several years, indicating local overwintering of these viruses. However, it remains unclear how mosquito-borne viruses can persist in winter, when conditions are generally unfavourable for virus circulation. One of the presumed routes of virus persistence is via diapausing mosquitoes. Here, we set out to study whether arbovirus persistence of West Nile virus (WNV), Usutu virus (USUV) and Sindbis virus (SINV) occurs in diapausing mosquitoes in the Netherlands. To this end, mosquito collections were carried out in the winter of 2020 and 2021, in hibernacula located in two areas with previously observed WNV and/or USUV activity. In total, we collected 4200 mosquitoes belonging to four species (Culex pipiens, Culiseta annulata, Anopheles maculipennis s.l., and Culex territans), which were pooled in 490 monospecific pools. These pools were subjected to WNV-, USUV- and SINV-screening using a multiplex real-time RT-PCR assay. All mosquito pools tested negative for the presence of WNV, USUV and SINV RNA. Consequently, we did not find evidence of arbovirus persistence in diapausing mosquitoes in the Netherlands, even though USUV and WNV have re-appeared in birds and/or mosquitoes during the summer seasons of 2020-2022. Concluding, given the persistence of USUV and WNV in the Netherlands and SINV in other temperate regions, this study highlights the importance of further research on (alternative) arbovirus overwintering routes.

15.
Am J Trop Med Hyg ; 108(1): 51-60, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36410320

RESUMEN

Larval source management (LSM) could reduce malaria transmission when executed alongside core vector control strategies. Involving communities in LSM could increase intervention coverage, reduce operational costs, and promote sustainability via community buy-in. We assessed the effectiveness of community-led LSM to reduce anopheline larval densities in 26 villages along the perimeter of Majete Wildlife Reserve in southern Malawi. The communities formed LSM committees which coordinated LSM activities in their villages following specialized training. Effectiveness of larviciding by LSM committees was assessed via pre- and post-spray larval sampling. The effect of community-led LSM on anopheline larval densities in intervention villages was assessed via comparisons with densities in non-LSM villages over a period of 14 months. Surveys involving 502 respondents were undertaken in intervention villages to explore community motivation and participation, and factors influencing these outcomes. Larviciding by LSM committees reduced anopheline larval densities in post-spray sampling compared with pre-spray sampling (P < 0.0001). No differences were observed between anopheline larval densities during pre-spray sampling in LSM villages and those in non-LSM villages (P = 0.282). Knowledge about vector biology and control, and someone's role in LSM motivated community participation in the vector control program. Despite reducing anopheline larval densities in LSM villages, the impact of the community-led LSM could not be detected in our study setting because of low mosquito densities after scale-up of core malaria control interventions. Still, the contributions of the intervention in increasing a community's knowledge of malaria, its risk factors, and its control methods highlight potential benefits of the approach.


Asunto(s)
Anopheles , Malaria , Animales , Humanos , Malaui/epidemiología , Control de Mosquitos/métodos , Malaria/prevención & control , Mosquitos Vectores , Ecosistema , Participación de la Comunidad , Larva
16.
Med Vet Entomol ; 37(2): 228-237, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36346219

RESUMEN

Collecting blood-fed mosquitoes to monitor pathogen presence or to gather information on the host blood meal is often challenging. Fermenting molasses can be used to produce carbon dioxide to attract host-seeking mosquitoes, however, earlier work indicated that it may also attract blood-fed mosquitoes in the field. In the current study, these field results were validated in an experimental setting using a large cage setup with Anopheles coluzzii (Diptera, Culicidae). Blood-fed mosquitoes were indeed attracted to fermenting molasses with the highest attraction at 72 hours post feeding, which was used for subsequent experiments. Next, it was tested if fermentation of molasses is required for attraction, and whether it acts as an oviposition attractant, increases egg laying, or increases mosquito survival. The compounds that could be responsible for attraction were identified by combined electrophysiology and chemical analyses and formulated into a synthetic blend. Fermenting molasses attracted blood-fed mosquitoes in the large cage study, while fermenting sugar and non-fermenting molasses did not. The fecundity of blood-fed mosquitoes increased after feeding on fermenting molasses, however, compounds emanating from molasses did not trigger oviposition. The synthetic blend attracted blood-fed mosquitoes and may be used to determine mosquito host selection and for xenomonitoring, as 'flying syringes' to detect non-vector borne pathogens.


Asunto(s)
Anopheles , Femenino , Animales , Anopheles/fisiología , Odorantes/análisis , Melaza/análisis , Oviposición , Dióxido de Carbono , Mosquitos Vectores/fisiología , Conducta Alimentaria
17.
Front Cell Infect Microbiol ; 13: 1206089, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38170150

RESUMEN

Rift Valley fever virus (RVFV) is a (re)emerging mosquito-borne pathogen impacting human and animal health. How RVFV spreads through a population depends on population-level and individual-level interactions between vector, host and pathogen. Here, we estimated the probability for RVFV to transmit to naive animals by experimentally exposing lambs to a bite of an infectious mosquito, and assessed if and how RVFV infection subsequently developed in the exposed animal. Aedes aegypti mosquitoes, previously infected via feeding on a viremic lamb, were used to expose naive lambs to the virus. Aedes aegypti colony mosquitoes were used as they are easy to maintain and readily feed in captivity. Other mosquito spp. could be examined with similar methodology. Lambs were exposed to either 1-3 (low exposure) or 7-9 (high exposure) infectious mosquitoes. All lambs in the high exposure group became viremic and showed characteristic signs of Rift Valley fever within 2-4 days post exposure. In contrast, 3 out of 12 lambs in the low exposure group developed viremia and disease, with similar peak-levels of viremia as the high exposure group but with some heterogeneity in the onset of viremia. These results suggest that the likelihood for successful infection of a ruminant host is affected by the number of infectious mosquitoes biting, but also highlights that a single bite of an infectious mosquito can result in disease. The per bite mosquito-to-host transmission efficiency was estimated at 28% (95% confidence interval: 15 - 47%). We subsequently combined this transmission efficiency with estimates for life traits of Aedes aegypti or related mosquitoes into a Ross-McDonald mathematical model to illustrate scenarios under which major RVFV outbreaks could occur in naïve populations (i.e., R0 >1). The model revealed that relatively high vector-to-host ratios as well as mosquitoes feeding preferably on competent hosts are required for R0 to exceed 1. Altogether, this study highlights the importance of experiments that mimic natural exposure to RVFV. The experiments facilitate a better understanding of the natural progression of disease and a direct way to obtain epidemiological parameters for mathematical models.


Asunto(s)
Aedes , Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Animales , Mosquitos Vectores , Fiebre del Valle del Rift/epidemiología , Rumiantes , Ovinos , Viremia/veterinaria
18.
PLoS Biol ; 20(11): e3001870, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36378688

RESUMEN

Bunyaviruses lack a specific mechanism to ensure the incorporation of a complete set of genome segments into each virion, explaining the generation of incomplete virus particles lacking one or more genome segments. Such incomplete virus particles, which may represent the majority of particles produced, are generally considered to interfere with virus infection and spread. Using the three-segmented arthropod-borne Rift Valley fever virus as a model bunyavirus, we here show that two distinct incomplete virus particle populations unable to spread autonomously are able to efficiently complement each other in both mammalian and insect cells following co-infection. We further show that complementing incomplete virus particles can co-infect mosquitoes, resulting in the reconstitution of infectious virus that is able to disseminate to the mosquito salivary glands. Computational models of infection dynamics predict that incomplete virus particles can positively impact virus spread over a wide range of conditions, with the strongest effect at intermediate multiplicities of infection. Our findings suggest that incomplete particles may play a significant role in within-host spread and between-host transmission, reminiscent of the infection cycle of multipartite viruses.


Asunto(s)
Arbovirus , Culicidae , Orthobunyavirus , Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Virosis , Animales , Humanos , Virus de la Fiebre del Valle del Rift/genética , Fiebre del Valle del Rift/genética , Fiebre del Valle del Rift/metabolismo , Virión/metabolismo , Mamíferos
19.
Parasit Vectors ; 15(1): 414, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36348368

RESUMEN

Mosquito species belonging to the genus Aedes have attracted the interest of scientists and public health officers because of their capacity to transmit viruses that affect humans. Some of these species were brought outside their native range by means of trade and tourism and then colonised new regions thanks to a unique combination of eco-physiological traits. Considering mosquito physiological and behavioural traits to understand and predict their population dynamics is thus a crucial step in developing strategies to mitigate the local densities of invasive Aedes populations. Here, we synthesised the life cycle of four invasive Aedes species (Ae. aegypti, Ae. albopictus, Ae. japonicus and Ae. koreicus) in a single multi-scale stochastic modelling framework which we coded in the R package dynamAedes. We designed a stage-based and time-discrete stochastic model driven by temperature, photo-period and inter-specific larval competition that can be applied to three different spatial scales: punctual, local and regional. These spatial scales consider different degrees of spatial complexity and data availability by accounting for both active and passive dispersal of mosquito species as well as for the heterogeneity of the input temperature data. Our overarching aim was to provide a flexible, open-source and user-friendly tool rooted in the most updated knowledge on the species' biology which could be applied to the management of invasive Aedes populations as well as to more theoretical ecological inquiries.


Asunto(s)
Aedes , Humanos , Animales , Aedes/fisiología , Larva/fisiología , Especies Introducidas , Dinámica Poblacional , Temperatura , Mosquitos Vectores/fisiología
20.
Prev Vet Med ; 209: 105777, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36272258

RESUMEN

Tick-borne diseases (TBD) are a major constraint to livestock health and productivity in sub-Saharan Africa. Nonetheless, there are relatively few robust epidemiologic studies documenting TBD and its management in different endemic settings in Kenya. Therefore, a cross-sectional study using multi-stage cluster sampling was undertaken to characterize the epidemiology of TBD and management factors among zebu cattle reared under an extensive system in coastal Kenya. Blood samples from 1486 cattle from 160 herds in 14 villages were screened for the presence of tick-borne bacterial and protozoan pathogens using PCR with high-resolution melting analysis and sequencing. Standardized questionnaires were used to collect data on herd structure and herd management practices, and a mixed-effect logistic regression model to identify risk factors for tick-borne pathogens (TBPs). The application of chemical acaricide was the primary method for tick control (96.3%, 154/160), with the amidine group (mainly Triatix®, amitraz) being the most frequently used acaricides. Respondents identified East Coast fever as the most important disease and Butalex® (buparvaquone) was the most commonly administered drug in response to perceived TBD in cattle. The overall animal- and herd-level prevalence for TBPs were 24.2% (95% confidence interval (CI): 22.0-26.4%) and 75.6% (95% CI: 68.2-82.1%), respectively. Cattle were infected with Anaplasma marginale (10.9%, 95% CI: 9.4-12.6), Theileria parva (9.0%, 95% CI: 7.5-10.5), Anaplasma platys (2.6%, 95% CI: 1.9-3.6), Theileria velifera (1.1%, 95% CI: 0.7-1.8), Babesia bigemina (0.5%, 95% CI: 0.2-1.0), and Anaplasma sp. (0.1%, 95% CI: 0.0-0.4). Moreover, 21 cattle (1.4%) were co-infected with two TBPs. None of the assessed potential risk factors for the occurrence of either A. marginale or T. parva in cattle were statistically significant. The intra-herd correlation coefficients (lCCs) computed in this study were 0.29 (A. marginale) and 0.14 (T. parva). This study provides updated molecular-based information on the epidemiological status of TBPs of cattle and herd management practices in coastal Kenya. This information can be used in designing cost-effective control strategies for combating these TBD in the region.


Asunto(s)
Anaplasmosis , Enfermedades de los Bovinos , Theileria , Theileriosis , Enfermedades por Picaduras de Garrapatas , Garrapatas , Bovinos , Animales , Garrapatas/microbiología , Kenia/epidemiología , Control de Ácaros y Garrapatas/métodos , Estudios Transversales , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/microbiología , Theileriosis/epidemiología , Theileriosis/prevención & control , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/prevención & control , Enfermedades por Picaduras de Garrapatas/veterinaria , Anaplasmosis/epidemiología , Anaplasmosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA