Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L574-L588, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38440830

RESUMEN

Although tobramycin increases lung function in people with cystic fibrosis (pwCF), the density of Pseudomonas aeruginosa (P. aeruginosa) in the lungs is only modestly reduced by tobramycin; hence, the mechanism whereby tobramycin improves lung function is not completely understood. Here, we demonstrate that tobramycin increases 5' tRNA-fMet halves in outer membrane vesicles (OMVs) secreted by laboratory and CF clinical isolates of P. aeruginosa. The 5' tRNA-fMet halves are transferred from OMVs into primary CF human bronchial epithelial cells (CF-HBEC), decreasing OMV-induced IL-8 and IP-10 secretion. In mouse lungs, increased expression of the 5' tRNA-fMet halves in OMVs attenuated KC (murine homolog of IL-8) secretion and neutrophil recruitment. Furthermore, there was less IL-8 and neutrophils in bronchoalveolar lavage fluid isolated from pwCF during the period of exposure to tobramycin versus the period off tobramycin. In conclusion, we have shown in mice and in vitro studies on CF-HBEC that tobramycin reduces inflammation by increasing 5' tRNA-fMet halves in OMVs that are delivered to CF-HBEC and reduce IL-8 and neutrophilic airway inflammation. This effect is predicted to improve lung function in pwCF receiving tobramycin for P. aeruginosa infection.NEW & NOTEWORTHY The experiments in this report identify a novel mechanism, whereby tobramycin reduces inflammation in two models of CF. Tobramycin increased the secretion of tRNA-fMet halves in OMVs secreted by P. aeruginosa, which reduced the OMV-LPS-induced inflammatory response in primary cultures of CF-HBEC and in mouse lung, an effect predicted to reduce lung damage in pwCF.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Tobramicina , Fibrosis Quística/microbiología , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Fibrosis Quística/tratamiento farmacológico , Animales , Tobramicina/farmacología , Humanos , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/patología , Ratones , Ratones Endogámicos C57BL , Interleucina-8/metabolismo , Neumonía/metabolismo , Neumonía/patología , Neumonía/microbiología , Pulmón/patología , Pulmón/metabolismo , Pulmón/microbiología , Pulmón/efectos de los fármacos , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Líquido del Lavado Bronquioalveolar
2.
bioRxiv ; 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38352468

RESUMEN

Although tobramycin increases lung function in people with cystic fibrosis (pwCF), the density of Pseudomonas aeruginosa (P. aeruginosa) in the lungs is only modestly reduced by tobramycin; hence, the mechanism whereby tobramycin improves lung function is not completely understood. Here, we demonstrate that tobramycin increases 5' tRNA-fMet halves in outer membrane vesicles (OMVs) secreted by laboratory and CF clinical isolates of P. aeruginosa . The 5' tRNA-fMet halves are transferred from OMVs into primary CF human bronchial epithelial cells (CF-HBEC), decreasing OMV-induced IL-8 and IP-10 secretion. In mouse lung, increased expression of the 5' tRNA-fMet halves in OMVs attenuated KC secretion and neutrophil recruitment. Furthermore, there was less IL-8 and neutrophils in bronchoalveolar lavage fluid isolated from pwCF during the period of exposure to tobramycin versus the period off tobramycin. In conclusion, we have shown in mice and in vitro studies on CF-HBEC that tobramycin reduces inflammation by increasing 5' tRNA-fMet halves in OMVs that are delivered to CF-HBEC and reduce IL-8 and neutrophilic airway inflammation. This effect is predicted to improve lung function in pwCF receiving tobramycin for P. aeruginosa infection. New and noteworthy: The experiments in this report identify a novel mechanim whereby tobramycin reduces inflammation in two models of CF. Tobramycin increased the secretion of tRNA-fMet haves in OMVs secreted by P. aeruginiosa , which reduced the OMV-LPS induced inflammatory response in primary cultures of CF-HBEC and in mouse lung, an effect predicted to reduce lung damage in pwCF. Graphical abstract: The anti-inflammatory effect of tobramycin mediated by 5' tRNA-fMet halves secreted in P. aeruginosa OMVs. (A) P. aeruginosa colonizes the CF lungs and secrets OMVs. OMVs diffuse through the mucus layer overlying bronchial epithelial cells and induce IL-8 secretion, which recruits neutrophils that causes lung damage. ( B ) Tobramycin increases 5' tRNA-fMet halves in OMVs secreted by P. aeruginosa . 5' tRNA-fMet halves are delivered into host cells after OMVs fuse with lipid rafts in CF-HBEC and down-regulate protein expression of MAPK10, IKBKG, and EP300, which suppresses IL-8 secretion and neutrophils in the lungs. A reduction in neutrophils in CF BALF is predicted to improve lung function and decrease lung damage.

3.
mSystems ; 8(6): e0065323, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37975659

RESUMEN

IMPORTANCE: Antimicrobial-resistant infections contribute to millions of deaths worldwide every year. In particular, the group of bacteria collectively known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) pathogens are of considerable medical concern due to their virulence and exceptional ability to develop antibiotic resistance. New kinds of antimicrobial therapies are urgently needed to treat patients for whom existing antibiotics are ineffective. The Rocket-miR application predicts targets of human miRNAs in bacterial and fungal pathogens, rapidly identifying candidate miRNA-based antimicrobials. The application's target audience are microbiologists that have the laboratory resources to test the application's predictions. The Rocket-miR application currently supports 24 recognized human pathogens that are relevant to numerous diseases including cystic fibrosis, chronic obstructive pulmonary disease (COPD), urinary tract infections, and pneumonia. Furthermore, the application code was designed to be easily extendible to other human pathogens that commonly cause hospital-acquired infections.


Asunto(s)
Antiinfecciosos , MicroARNs , Humanos , MicroARNs/genética , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Staphylococcus aureus , Enterobacter
4.
Am J Physiol Lung Cell Mol Physiol ; 325(1): L54-L65, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37256658

RESUMEN

Lung infections caused by antibiotic-resistant strains of Pseudomonas aeruginosa are difficult to eradicate in immunocompromised hosts such as those with cystic fibrosis. We previously demonstrated that extracellular vesicles (EVs) secreted by primary human airway epithelial cells (AECs) deliver microRNA let-7b-5p to P. aeruginosa to suppress biofilm formation and increase sensitivity to beta-lactam antibiotics. In this study, we show that EVs secreted by AECs transfer multiple distinct short RNA fragments to P. aeruginosa that are predicted to target the three subunits of the fluoroquinolone efflux pump MexHI-OpmD, thus increasing antibiotic sensitivity. Exposure of P. aeruginosa to EVs resulted in a significant reduction in the protein levels of MexH (-48%), MexI (-50%), and OpmD (-35%). Moreover, EVs reduced planktonic growth of P. aeruginosa in the presence of the fluoroquinolone antibiotic ciprofloxacin by 20%. A mexGHI-opmD deletion mutant of P. aeruginosa phenocopied this increased sensitivity to ciprofloxacin. Finally, we found that a fragment of an 18S ribosomal RNA (rRNA) external transcribed spacer that was transferred to P. aeruginosa by EVs reduced planktonic growth of P. aeruginosa in the presence of ciprofloxacin, reduced the minimum inhibitory concentration of P. aeruginosa for ciprofloxacin by over 50%, and significantly reduced protein levels of both MexH and OpmD. In conclusion, an rRNA fragment secreted by AECs in EVs that targets the fluoroquinolone efflux pump MexHI-OpmD downregulated these proteins and increased the ciprofloxacin sensitivity of P. aeruginosa. A combination of rRNA fragments and ciprofloxacin packaged in nanoparticles or EVs may benefit patients with ciprofloxacin-resistant P. aeruginosa infections.NEW & NOTEWORTHY Human RNA fragments transported in extracellular vesicles interfere with Pseudomonas aeruginosa drug efflux pumps. A combination of rRNA fragments and ciprofloxacin packaged in nanoparticles or EVs may benefit patients with antibiotic-resistant P. aeruginosa infections.


Asunto(s)
Vesículas Extracelulares , Infecciones por Pseudomonas , Humanos , Fluoroquinolonas/farmacología , Fluoroquinolonas/metabolismo , Pseudomonas aeruginosa , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Antibacterianos/farmacología , Ciprofloxacina/farmacología , Ciprofloxacina/metabolismo , Infecciones por Pseudomonas/tratamiento farmacológico
5.
mSystems ; 7(6): e0046822, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36259735

RESUMEN

The last 20 years have witnessed an explosion in publicly available gene expression and proteomic data and new tools to help researchers analyze these data. Tools typically include statistical approaches to identify differential expression, integrate prior knowledge, visualize results, and suggest how differential expression relates to changes in phenotype. Here, we provide a simple web-based tool that bridges some of the gaps between the functionality available to those studying eukaryotes and those studying prokaryotes. Specifically, our Shiny web application ESKAPE Act PLUS allows researchers to upload results of high-throughput bacterial gene or protein expression experiments from 13 species, including the six ESKAPE pathogens, to our system and receive (i) an analysis of which KEGG pathways or GO terms are significantly activated or repressed, (ii) visual representations of the magnitude of activation or repression in each category, and (iii) detailed diagrams showing known relationships between genes in each regulated KEGG pathway and fold changes of individual genes. Importantly, our statistical approach does not require users to identify which genes or proteins are differentially expressed. ESKAPE Act PLUS provides high-quality statistics and graphical representations not available using other web-based systems to assess whether prokaryotic biological functions are activated or repressed by experimental conditions. To our knowledge, ESKAPE Act PLUS is the first application that provides pathway activation analysis and pathway-level visualization of gene or protein expression for prokaryotes. IMPORTANCE ESKAPE pathogens are bacteria of concern because they develop antibiotic resistance and can cause life-threatening infections, particularly in more susceptible immunocompromised people. ESKAPE Act PLUS is a user-friendly web application that will advance research on ESKAPE and other pathogens commonly studied by the biomedical community by allowing scientists to infer biological phenotypes from the results from high-throughput bacterial gene or protein expression experiments. ESKAPE Act PLUS currently supports analysis of 23 strains of bacteria from 13 species and can also be used to re-analyze publicly available data to generate new findings and hypotheses for follow-up experiments.


Asunto(s)
Bacterias , Proteómica , Bacterias/genética , Programas Informáticos , Genes Bacterianos
6.
Sci Data ; 9(1): 343, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710652

RESUMEN

Researchers studying cystic fibrosis (CF) pathogens have produced numerous RNA-seq datasets which are available in the gene expression omnibus (GEO). Although these studies are publicly available, substantial computational expertise and manual effort are required to compare similar studies, visualize gene expression patterns within studies, and use published data to generate new experimental hypotheses. Furthermore, it is difficult to filter available studies by domain-relevant attributes such as strain, treatment, or media, or for a researcher to assess how a specific gene responds to various experimental conditions across studies. To reduce these barriers to data re-analysis, we have developed an R Shiny application called CF-Seq, which works with a compendium of 128 studies and 1,322 individual samples from 13 clinically relevant CF pathogens. The application allows users to filter studies by experimental factors and to view complex differential gene expression analyses at the click of a button. Here we present a series of use cases that demonstrate the application is a useful and efficient tool for new hypothesis generation. (CF-Seq: http://scangeo.dartmouth.edu/CFSeq/ ).


Asunto(s)
Fibrosis Quística , Análisis de Secuencia de ARN , Fibrosis Quística/genética , Análisis de Datos , Humanos , RNA-Seq , Programas Informáticos
7.
PLoS Genet ; 18(1): e1009622, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34982775

RESUMEN

Ssn3, also known as Cdk8, is a member of the four protein Cdk8 submodule within the multi-subunit Mediator complex involved in the co-regulation of transcription. In Candida albicans, the loss of Ssn3 kinase activity affects multiple phenotypes including cellular morphology, metabolism, nutrient acquisition, immune cell interactions, and drug resistance. In these studies, we generated a strain in which Ssn3 was replaced with a functional variant of Ssn3 that can be rapidly and selectively inhibited by the ATP analog 3-MB-PP1. Consistent with ssn3 null mutant and kinase dead phenotypes, inhibition of Ssn3 kinase activity promoted hypha formation. Furthermore, the increased expression of hypha-specific genes was the strongest transcriptional signal upon inhibition of Ssn3 in transcriptomics analyses. Rapid inactivation of Ssn3 was used for phosphoproteomic studies performed to identify Ssn3 kinase substrates associated with filamentation potential. Both previously validated and novel Ssn3 targets were identified. Protein phosphorylation sites that were reduced specifically upon Ssn3 inhibition included two sites in Flo8 which is a transcription factor known to positively regulate C. albicans morphology. Mutation of the two Flo8 phosphosites (threonine 589 and serine 620) was sufficient to increase Flo8-HA levels and Flo8 dependent transcriptional and morphological changes, suggesting that Ssn3 kinase activity negatively regulates Flo8.Under embedded conditions, when ssn3Δ/Δ and efg1Δ/Δ mutants were hyperfilamentous, FLO8 was essential for hypha formation. Previous work has also shown that loss of Ssn3 activity leads to increased alkalinization of medium with amino acids. Here, we show that the ssn3Δ/Δ medium alkalinization phenotype, which is dependent on STP2, a transcription factor involved in amino acid utilization, also requires FLO8 and EFG1. Together, these data show that Ssn3 activity can modulate Flo8 and its direct and indirect interactions in different ways, and underscores the potential importance of considering Ssn3 function in the control of transcription factor activities.


Asunto(s)
Candida albicans/patogenicidad , Quinasa 8 Dependiente de Ciclina/genética , Proteómica/métodos , Purinas/farmacología , Factores de Transcripción/metabolismo , Candida albicans/efectos de los fármacos , Candida albicans/metabolismo , Quinasa 8 Dependiente de Ciclina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Mutación con Pérdida de Función , Fosforilación , Factores de Transcripción/genética
8.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260396

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that forms antibiotic-resistant biofilms, which facilitate chronic infections in immunocompromised hosts. We have previously shown that P. aeruginosa secretes outer-membrane vesicles that deliver a small RNA to human airway epithelial cells (AECs), in which it suppresses the innate immune response. Here, we demonstrate that interdomain communication through small RNA-containing membrane vesicles is bidirectional and that microRNAs (miRNAs) in extracellular vesicles (EVs) secreted by human AECs regulate protein expression, antibiotic sensitivity, and biofilm formation by P. aeruginosa Specifically, human EVs deliver miRNA let-7b-5p to P. aeruginosa, which systematically decreases the abundance of proteins essential for biofilm formation, including PpkA and ClpV1-3, and increases the ability of beta-lactam antibiotics to reduce biofilm formation by targeting the beta-lactamase AmpC. Let-7b-5p is bioinformatically predicted to target not only PpkA, ClpV1, and AmpC in P. aeruginosa but also the corresponding orthologs in Burkholderia cenocepacia, another notorious opportunistic lung pathogen, suggesting that the ability of let-7b-5p to reduce biofilm formation and increase beta-lactam sensitivity is not limited to P. aeruginosa Here, we provide direct evidence for transfer of miRNAs in EVs secreted by eukaryotic cells to a prokaryote, resulting in subsequent phenotypic alterations in the prokaryote as a result of this interdomain communication. Since let-7-family miRNAs are in clinical trials to reduce inflammation and because chronic P. aeruginosa lung infections are associated with a hyperinflammatory state, treatment with let-7b-5p and a beta-lactam antibiotic in nanoparticles or EVs may benefit patients with antibiotic-resistant P. aeruginosa infections.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , Pseudomonas aeruginosa/fisiología , Antagomirs/farmacología , Aztreonam/farmacología , Biopelículas/efectos de los fármacos , Vesículas Extracelulares/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Humanos , MicroARNs/genética , Plancton/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/aislamiento & purificación , beta-Lactamas/farmacología
9.
mSystems ; 6(2)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758032

RESUMEN

The NCBI Gene Expression Omnibus (GEO) provides tools to query and download transcriptomic data. However, less than 4% of microbial experiments include the sample group annotations required to assess differential gene expression for high-throughput reanalysis, and data deposited after 2014 universally lack these annotations. Our algorithm GAUGE (general annotation using text/data group ensembles) automatically annotates GEO microbial data sets, including microarray and RNA sequencing studies, increasing the percentage of data sets amenable to analysis from 4% to 33%. Eighty-nine percent of GAUGE-annotated studies matched group assignments generated by human curators. To demonstrate how GAUGE annotation can lead to scientific insight, we created GAPE (GAUGE-annotated Pseudomonas aeruginosa and Escherichia coli transcriptomic compendia for reanalysis), a Shiny Web interface to analyze 73 GAUGE-annotated P. aeruginosa studies, three times more than previously available. GAPE analysis revealed that PA3923, a gene of unknown function, was frequently differentially expressed in more than 50% of studies and significantly coregulated with genes involved in biofilm formation. Follow-up wet-bench experiments demonstrate that PA3923 mutants are indeed defective in biofilm formation, consistent with predictions facilitated by GAUGE and GAPE. We anticipate that GAUGE and GAPE, which we have made freely available, will make publicly available microbial transcriptomic data easier to reuse and lead to new data-driven hypotheses.IMPORTANCE GEO archives transcriptomic data from over 5,800 microbial experiments and allows researchers to answer questions not directly addressed in published papers. However, less than 4% of the microbial data sets include the sample group annotations required for high-throughput reanalysis. This limitation blocks a considerable amount of microbial transcriptomic data from being reused easily. Here, we demonstrate that the GAUGE algorithm could make 33% of microbial data accessible to parallel mining and reanalysis. GAUGE annotations increase statistical power and, thereby, make consistent patterns of differential gene expression easier to identify. In addition, we developed GAPE (GAUGE-annotated Pseudomonas aeruginosa and Escherichia coli transcriptomic compendia for reanalysis), a Shiny Web interface that performs parallel analyses on P. aeruginosa and E. coli compendia. Source code for GAUGE and GAPE is freely available and can be repurposed to create compendia for other bacterial species.

10.
Am J Physiol Lung Cell Mol Physiol ; 320(4): L530-L544, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33471607

RESUMEN

Mutations in CFTR alter macrophage responses, for example, by reducing their ability to phagocytose and kill bacteria. Altered macrophage responses may facilitate bacterial infection and inflammation in the lungs, contributing to morbidity and mortality in cystic fibrosis (CF). Extracellular vesicles (EVs) are secreted by multiple cell types in the lungs and participate in the host immune response to bacterial infection, but the effect of EVs secreted by CF airway epithelial cells (AEC) on CF macrophages is unknown. This report examines the effect of EVs secreted by primary AEC on monocyte-derived macrophages (MDM) and contrasts responses of CF and wild type (WT) MDM. We found that EVs generally increase pro-inflammatory cytokine secretion and expression of innate immune genes in MDM, especially when EVs are derived from AEC exposed to Pseudomonas aeruginosa and that this effect is attenuated in CF MDM. Specifically, EVs secreted by P. aeruginosa exposed AEC (EV-PA) induced immune response genes and increased secretion of proinflammatory cytokines, chemoattractants, and chemokines involved in tissue repair by WT MDM, but these effects were less robust in CF MDM. We attribute attenuated responses by CF MDM to differences between CF and WT macrophages because EVs secreted by CF AEC or WT AEC elicited similar responses in CF MDM. Our findings demonstrate the importance of AEC EVs in macrophage responses and show that the Phe508del mutation in CFTR attenuates the innate immune response of MDM to EVs.


Asunto(s)
Fibrosis Quística/inmunología , Vesículas Extracelulares/microbiología , Inmunidad Innata/inmunología , Inflamación/inmunología , Pulmón/microbiología , Macrófagos/inmunología , Infecciones por Pseudomonas/inmunología , Células Cultivadas , Fibrosis Quística/microbiología , Fibrosis Quística/patología , Citocinas , Células Epiteliales/microbiología , Humanos , Inflamación/microbiología , Inflamación/patología , Macrófagos/microbiología , Macrófagos/patología , Fagocitosis , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/aislamiento & purificación
11.
PLoS Genet ; 16(8): e1008783, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32813693

RESUMEN

Pseudomonas aeruginosa and Candida albicans are opportunistic pathogens whose interactions involve the secreted products ethanol and phenazines. Here, we describe the role of ethanol in mixed-species co-cultures by dual-seq analyses. P. aeruginosa and C. albicans transcriptomes were assessed after growth in mono-culture or co-culture with either ethanol-producing C. albicans or a C. albicans mutant lacking the primary ethanol dehydrogenase, Adh1. Analysis of the RNA-Seq data using KEGG pathway enrichment and eADAGE methods revealed several P. aeruginosa responses to C. albicans-produced ethanol including the induction of a non-canonical low-phosphate response regulated by PhoB. C. albicans wild type, but not C. albicans adh1Δ/Δ, induces P. aeruginosa production of 5-methyl-phenazine-1-carboxylic acid (5-MPCA), which forms a red derivative within fungal cells and exhibits antifungal activity. Here, we show that C. albicans adh1Δ/Δ no longer activates P. aeruginosa PhoB and PhoB-regulated phosphatase activity, that exogenous ethanol complements this defect, and that ethanol is sufficient to activate PhoB in single-species P. aeruginosa cultures at permissive phosphate levels. The intersection of ethanol and phosphate in co-culture is inversely reflected in C. albicans; C. albicans adh1Δ/Δ had increased expression of genes regulated by Pho4, the C. albicans transcription factor that responds to low phosphate, and Pho4-dependent phosphatase activity. Together, these results show that C. albicans-produced ethanol stimulates P. aeruginosa PhoB activity and 5-MPCA-mediated antagonism, and that both responses are dependent on local phosphate concentrations. Further, our data suggest that phosphate scavenging by one species improves phosphate access for the other, thus highlighting the complex dynamics at play in microbial communities.


Asunto(s)
Antibiosis , Candida albicans/fisiología , Etanol/metabolismo , Fosfatos/metabolismo , Pseudomonas aeruginosa/fisiología , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pseudomonas aeruginosa/metabolismo , Transducción de Señal , Transcriptoma
12.
Am J Physiol Lung Cell Mol Physiol ; 319(2): L256-L265, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32521165

RESUMEN

Most quantitative PCR (qPCR) experiments report differential expression relative to the expression of one or more reference genes. Therefore, when experimental conditions alter reference gene expression, qPCR results may be compromised. Little is known about the magnitude of this problem in practice. We found that reference gene responses are common and hard to predict and that their stability should be demonstrated in each experiment. Our reanalysis of 15 airway epithelia microarray data sets retrieved from the National Center for Biotechnology Information (NCBI) identified no common reference gene that was reliable in all 15 studies. Reanalysis of published RNA sequencing (RNA-seq) data in which human bronchial epithelial cells (HBEC) were exposed to Pseudomonas aeruginosa revealed that minor experimental details, including bacterial strain, may alter reference gene responses. Direct measurement of 32 TaqMan reference genes in primary cultures of HBEC exposed to P. aeruginosa (strain PA14) demonstrated that choosing an unstable reference gene could make it impossible to observe statistically significant changes in IL8 gene expression. We found that reference gene instability is a general phenomenon and not limited to studies of airway epithelial cells. In a diverse compendium of 986 human microarray experiments retrieved from the NCBI, reference genes were differentially expressed in 42% of studies. Experimentally induced changes in reference gene expression ranged from 21% to 212%. These results highlight the importance of identifying adequate reference genes for each experimental system and documenting their response to treatment in each experiment. This will enhance experimental rigor and reproducibility in qPCR studies.


Asunto(s)
Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Expresión Génica/genética , Pseudomonas aeruginosa/patogenicidad , Mucosa Respiratoria/microbiología , Perfilación de la Expresión Génica/métodos , Humanos , ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Mucosa Respiratoria/metabolismo , Análisis de Secuencia de ARN/métodos
13.
PLoS One ; 14(1): e0211290, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30682135

RESUMEN

Tobramycin is commonly used to treat Pseudomonas aeruginosa lung infections in patients with Cystic Fibrosis (CF). Tobramycin treatment leads to increased lung function and fewer clinical exacerbations in CF patients, and modestly reduces the density of P. aeruginosa in the lungs. P. aeruginosa resides primarily in the mucus overlying lung epithelial cells and secretes outer membrane vesicles (OMVs) that diffuse through the mucus and fuse with airway epithelial cells, thus delivering virulence factors into the cytoplasm that modify the innate immune response. The goal of this study was to test the hypothesis that Tobramycin reduces the abundance of virulence factors in OMVs secreted by P. aeruginosa. Characterization of the proteome of OMVs isolated from control or Tobramycin-exposed P. aeruginosa strain PAO1 revealed that Tobramycin reduced several OMV-associated virulence determinants, including AprA, an alkaline protease that enhances P. aeruginosa survival in the lung, and is predicted to contribute to the inhibitory effect of P. aeruginosa on Phe508del-CFTR Cl- secretion by primary human bronchial epithelial cells. Deletion of the gene encoding AprA reduced the inhibitory effect of P. aeruginosa on Phe508del-CFTR Cl- secretion. Moreover, as predicted by our proteomic analysis, OMVs isolated from Tobramycin treated P. aeruginosa had a diminished inhibitory effect on Phe508del-CFTR Cl- secretion compared to OMVs isolated from control P. aeruginosa. Taken together, our proteomic analysis of OMVs and biological validation suggest that Tobramycin may improve lung function in CF patients infected with P. aeruginosa by reducing several key virulence factors in OMVs that reduce CFTR Cl- secretion, which is essential for bacterial clearance from the lungs.


Asunto(s)
Exopeptidasas/metabolismo , Proteómica/métodos , Pseudomonas aeruginosa/patogenicidad , Vesículas Secretoras/microbiología , Tobramicina/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bronquios/citología , Bronquios/metabolismo , Bronquios/microbiología , Células Cultivadas , Fibrosis Quística/genética , Fibrosis Quística/microbiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Exopeptidasas/genética , Humanos , Inmunidad Innata/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Vesículas Secretoras/efectos de los fármacos , Vesículas Secretoras/metabolismo , Virulencia/efectos de los fármacos
14.
Am J Physiol Lung Cell Mol Physiol ; 316(1): L206-L215, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30358440

RESUMEN

Pseudomonas aeruginosa secretes outer-membrane vesicles (OMVs) that fuse with cholesterol-rich lipid rafts in the apical membrane of airway epithelial cells and decrease wt-CFTR Cl- secretion. Herein, we tested the hypothesis that a reduction of the cholesterol content of CF human airway epithelial cells by cyclodextrins reduces the inhibitory effect of OMVs on VX-809 (lumacaftor)-stimulated Phe508del CFTR Cl- secretion. Primary CF bronchial epithelial cells and CFBE cells were treated with vehicle, hydroxypropyl-ß-cyclodextrin (HPßCD), or methyl-ß-cyclodextrin (MßCD), and the effects of OMVs secreted by P. aeruginosa on VX-809 stimulated Phe508del CFTR Cl- secretion were measured in Ussing chambers. Neither HPßCD nor MßCD were cytotoxic, and neither altered Phe508del CFTR Cl- secretion. Both cyclodextrins reduced OMV inhibition of VX-809-stimulated Phe508del-CFTR Cl- secretion when added to the apical side of CF monolayers. Both cyclodextrins also reduced the ability of P. aeruginosa to form biofilms and suppressed planktonic growth of P. aeruginosa. Our data suggest that HPßCD, which is in clinical trials for Niemann-Pick Type C disease, and MßCD, which has been approved by the U.S. Food and Drug Administration for use in solubilizing lipophilic drugs, may enhance the clinical efficacy of VX-809 in CF patients when added to the apical side of airway epithelial cells, and reduce planktonic growth and biofilm formation by P. aeruginosa. Both effects would be beneficial to CF patients.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/farmacología , Micropartículas Derivadas de Células , Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística , Microdominios de Membrana , Pseudomonas aeruginosa/fisiología , beta-Ciclodextrinas/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Bronquios/metabolismo , Bronquios/microbiología , Bronquios/patología , Línea Celular , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patología , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/metabolismo , Fibrosis Quística/microbiología , Fibrosis Quística/patología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Células Epiteliales/patología , Humanos , Microdominios de Membrana/metabolismo , Microdominios de Membrana/patología
15.
Am J Physiol Lung Cell Mol Physiol ; 314(3): L432-L438, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29146575

RESUMEN

Cystic fibrosis (CF), the most common lethal genetic disease in Caucasians, is characterized by chronic bacterial lung infection and excessive inflammation, which lead to progressive loss of lung function and premature death. Although ivacaftor (VX-770) alone and ivacaftor in combination with lumacaftor (VX-809) improve lung function in CF patients with the Gly551Asp and del508Phe mutations, respectively, the effects of these drugs on the function of human CF macrophages are unknown. Thus studies were conducted to examine the effects of lumacaftor alone and lumacaftor in combination with ivacaftor (i.e., ORKAMBI) on the ability of human CF ( del508Phe/ del508Phe) monocyte-derived macrophages (MDMs) to phagocytose and kill Pseudomonas aeruginosa. Lumacaftor alone restored the ability of CF MDMs to phagocytose and kill P. aeruginosa to levels observed in MDMs obtained from non-CF (WT-CFTR) donors. This effect contrasts with the partial (~15%) correction of del508Phe Cl- secretion of airway epithelial cells by lumacaftor. Ivacaftor reduced the ability of lumacaftor to stimulate phagocytosis and killing of P. aeruginosa. Lumacaftor had no effect on P. aeruginosa-stimulated cytokine secretion by CF MDMs. Ivacaftor (5 µM) alone and ivacaftor in combination with lumacaftor reduced secretion of several proinflammatory cytokines. The clinical efficacy of ORKAMBI may be related in part to the ability of lumacaftor to stimulate phagocytosis and killing of P. aeruginosa by macrophages.


Asunto(s)
Aminofenoles/farmacología , Aminopiridinas/farmacología , Benzodioxoles/farmacología , Fibrosis Quística/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Fagocitosis , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Quinolonas/farmacología , Fibrosis Quística/microbiología , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Combinación de Medicamentos , Volumen Espiratorio Forzado , Humanos , Macrófagos/microbiología , Macrófagos/patología , Mutación , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología
16.
Bioinformatics ; 33(21): 3500-3501, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29036513

RESUMEN

SUMMARY: Current options to mine publicly available gene expression data deposited in NCBI's gene expression omnibus (GEO), such as the GEO web portal and related applications, are optimized to reanalyze a single study, or search for a single gene, and therefore require manual intervention to reanalyze multiple studies for user-specified gene sets. ScanGEO is a simple, user-friendly Shiny web application designed to identify differentially expressed genes across all GEO studies matching user-specified criteria, for a flexible set of genes, visualize results and provide summary statistics and other reports using a single command. AVAILABILITY AND IMPLEMENTATION: The ScanGEO source code is written in R and implemented as a Shiny app that can be freely accessed at http://scangeo.dartmouth.edu/ScanGEO/. For users who would like to run a local instantiation of the app, the R source code is available under a GNU GPLv3 license at https://github.com/StantonLabDartmouth/AppScanGEO. CONTACT: katja.koeppen@dartmouth.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Programas Informáticos , Minería de Datos , Humanos
17.
mSphere ; 1(6)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27921082

RESUMEN

Candida albicans behaviors are affected by pH, an important environmental variable. Filamentous growth is a pH-responsive behavior, where alkaline conditions favor hyphal growth and acid conditions favor growth as yeast. We employed filamentous growth as a tool to study the impact of pH on the hyphal growth regulator Cyr1, and we report that downregulation of cyclic AMP (cAMP) signaling by acidic pH contributes to the inhibition of hyphal growth in minimal medium with GlcNAc. Ras1 and Cyr1 are generally required for efficient hyphal growth, and the effects of low pH on Ras1 proteolysis and GTP binding are consistent with diminished cAMP output. Active alleles of ras1 do not suppress the hyphal growth defect at low pH, while dibutyryl cAMP partially rescues filamentous growth at low pH in a cyr1 mutant. These observations are consistent with Ras1-independent downregulation of Cyr1 by low pH. We also report that extracellular pH leads to rapid and prolonged decreases in intracellular pH, and these changes may contribute to reduced cAMP signaling by reducing intracellular bicarbonate pools. Transcriptomics analyses found that the loss of Cyr1 at either acidic or neutral pH leads to increases in transcripts involved in carbohydrate catabolism and protein translation and glycosylation and decreases in transcripts involved in oxidative metabolism, fluconazole transport, metal transport, and biofilm formation. Other pathways were modulated in pH-dependent ways. Our findings indicate that cAMP has a global role in pH-dependent responses, and this effect is mediated, at least in part, through Cyr1 in a Ras1-independent fashion. IMPORTANCECandida albicans is a human commensal and the causative agent of candidiasis, a potentially invasive and life-threatening infection. C. albicans experiences wide changes in pH during both benign commensalism (a common condition) and pathogenesis, and its morphology changes in response to this stimulus. Neutral pH is considered an activator of hyphal growth through Rim101, but the effect of low pH on other morphology-related pathways has not been extensively studied. We sought to determine the role of cyclic AMP signaling, a central regulator of morphology, in the sensing of pH. In addition, we asked broadly what cellular processes were altered by pH in both the presence and absence of this important signal integration system. We concluded that cAMP signaling is impacted by pH and that cAMP broadly impacts C. albicans physiology in both pH-dependent and -independent ways.

18.
PLoS One ; 11(10): e0164232, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27711152

RESUMEN

BACKGROUND: Due to frequent infections in cystic fibrosis (CF) patients, repeated respiratory cultures are obtained to inform treatment. When patients are unable to expectorate sputum, clinicians obtain throat swabs as a surrogate for lower respiratory cultures. There is no clear data in adult subjects demonstrating the adequacy of throat swabs as a surrogate for sputum or BAL. Our study was designed to determine the utility of throat swabs in identifying lung colonization with common organisms in adults with CF. METHODS: Adult CF subjects (n = 20) underwent bronchoscopy with BAL. Prior to bronchoscopy, a throat swab was obtained. A sputum sample was obtained from subjects who were able to spontaneously expectorate. All samples were sent for standard microbiology culture. RESULTS: Using BAL as the gold standard, we found the positive predictive value for Pseudomonas aeruginosa to be 100% in both sputum and throat swab compared to BAL. However, the negative predictive value for P. aeruginosa was 60% and 50% in sputum and throat swab, respectively. Conversely, the positive predictive value for Staphylococcus aureus was 57% in sputum and only 41% in throat swab and the negative predictive value of S. aureus was 100% in sputum and throat swab compared to BAL. CONCLUSIONS: Our data show that positive sputum and throat culture findings of P. aeruginosa reflect results found on BAL fluid analysis, suggesting these are reasonable surrogates to determine lung colonization with P. aeruginosa. However, sputum and throat culture findings of S. aureus do not appear to reflect S. aureus colonization of the lung.


Asunto(s)
Fibrosis Quística/patología , Faringe/microbiología , Pseudomonas aeruginosa/aislamiento & purificación , Esputo/microbiología , Staphylococcus aureus/aislamiento & purificación , Adulto , Líquido del Lavado Bronquioalveolar/microbiología , Broncoscopía , Fibrosis Quística/microbiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
19.
PLoS Pathog ; 12(6): e1005672, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27295279

RESUMEN

Bacterial outer membrane vesicle (OMV)-mediated delivery of proteins to host cells is an important mechanism of host-pathogen communication. Emerging evidence suggests that OMVs contain differentially packaged short RNAs (sRNAs) with the potential to target host mRNA function and/or stability. In this study, we used RNA-Seq to characterize differentially packaged sRNAs in Pseudomonas aeruginosa OMVs, and to show transfer of OMV sRNAs to human airway cells. We selected one sRNA for further study based on its stable secondary structure and predicted mRNA targets. Our candidate sRNA (sRNA52320), a fragment of a P. aeruginosa methionine tRNA, was abundant in OMVs and reduced LPS-induced as well as OMV-induced IL-8 secretion by cultured primary human airway epithelial cells. We also showed that sRNA52320 attenuated OMV-induced KC cytokine secretion and neutrophil infiltration in mouse lung. Collectively, these findings are consistent with the hypothesis that sRNA52320 in OMVs is a novel mechanism of host-pathogen interaction whereby P. aeruginosa reduces the host immune response.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Infecciones por Pseudomonas , ARN Interferente Pequeño/metabolismo , ARN Viral/metabolismo , Vesículas Transportadoras/metabolismo , Animales , Proteínas de la Membrana Bacteriana Externa/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Proteómica , Pseudomonas aeruginosa/patogenicidad , Mucosa Respiratoria/microbiología , Vesículas Transportadoras/genética
20.
mBio ; 6(3): e00129-15, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25968642

RESUMEN

UNLABELLED: The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (CRISPR/Cas) system is an adaptive immune system present in many archaea and bacteria. CRISPR/Cas systems are incredibly diverse, and there is increasing evidence of CRISPR/Cas systems playing a role in cellular functions distinct from phage immunity. Previously, our laboratory reported one such alternate function in which the type 1-F CRISPR/Cas system of the opportunistic pathogen Pseudomonas aeruginosa strain UCBPP-PA14 (abbreviated as P. aeruginosa PA14) inhibits both biofilm formation and swarming motility when the bacterium is lysogenized by the bacteriophage DMS3. In this study, we demonstrated that the presence of just the DMS3 protospacer and the protospacer-adjacent motif (PAM) on the P. aeruginosa genome is necessary and sufficient for this CRISPR-dependent loss of these group behaviors, with no requirement of additional DMS3 sequences. We also demonstrated that the interaction of the CRISPR system with the DMS3 protospacer induces expression of SOS-regulated phage-related genes, including the well-characterized pyocin operon, through the activity of the nuclease Cas3 and subsequent RecA activation. Furthermore, our data suggest that expression of the phage-related genes results in bacterial cell death on a surface due to the inability of the CRISPR-engaged strain to downregulate phage-related gene expression, while these phage-related genes have minimal impact on growth and viability under planktonic conditions. Deletion of the phage-related genes restores biofilm formation and swarming motility while still maintaining a functional CRISPR/Cas system, demonstrating that the loss of these group behaviors is an indirect effect of CRISPR self-targeting. IMPORTANCE: The various CRISPR/Cas systems found in both archaea and bacteria are incredibly diverse, and advances in understanding the complex mechanisms of these varied systems has not only increased our knowledge of host-virus interplay but has also led to a major advancement in genetic engineering. Recently, increasing evidence suggested that bacteria can co-opt the CRISPR system for functions besides adaptive immunity to phage infection. This study examined one such alternative function, and this report describes the mechanism of type 1-F CRISPR-dependent loss of the biofilm and swarming in the medically relevant opportunistic pathogen Pseudomonas aeruginosa. Since both biofilm formation and swarming motility are important in the virulence of P. aeruginosa, a full understanding of how the CRISPR system can regulate such group behaviors is fundamental to developing new therapeutics.


Asunto(s)
Bacteriófagos/genética , Biopelículas/crecimiento & desarrollo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Expresión Génica , Viabilidad Microbiana , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/virología , Regulación Bacteriana de la Expresión Génica , Genes Virales , Locomoción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA