Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
J Microbiol ; 62(3): 137-152, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38587593

RESUMEN

In the evolving landscape of cancer research, the human microbiome emerges as a pivotal determinant reshaping our understanding of tumorigenesis and therapeutic responses. Advanced sequencing technologies have uncovered a vibrant microbial community not confined to the gut but thriving within tumor tissues. Comprising bacteria, viruses, and fungi, this diverse microbiota displays distinct signatures across various cancers, with most research primarily focusing on bacteria. The correlations between specific microbial taxa within different cancer types underscore their pivotal roles in driving tumorigenesis and influencing therapeutic responses, particularly in chemotherapy and immunotherapy. This review amalgamates recent discoveries, emphasizing the translocation of the oral microbiome to the gut as a potential marker for microbiome dysbiosis across diverse cancer types and delves into potential mechanisms contributing to cancer promotion. Furthermore, it highlights the adverse effects of the microbiome on cancer development while exploring its potential in fortifying strategies for cancer prevention and treatment.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Neoplasias , Humanos , Neoplasias/microbiología , Neoplasias/terapia , Disbiosis/microbiología , Microbiota , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Carcinogénesis , Inmunoterapia , Boca/microbiología
3.
Mol Metab ; 83: 101924, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521185

RESUMEN

OBJECTIVES: Gut microbiota increases energy availability through fermentation of dietary fibers to short-chain fatty acids in conventionally raised mice. Energy deficiency in germ-free (GF) mice increases glucagon-like peptide-1 (GLP-1) levels, which slows intestinal transit. To further analyze the role of GLP-1-mediated signaling in this model of energy deficiency, we re-derived mice lacking GLP-1 receptor (GLP-1R KO) as GF. METHODS: GLP-1R KO mice were rederived as GF through hysterectomy and monitored for 30 weeks. Mice were subjected to rescue experiments either through feeding an energy-rich diet or colonization with a normal cecal microbiota. Histology and intestinal function were assessed at different ages. Intestinal organoids were assessed to investigate stemness. RESULTS: Unexpectedly, 25% of GF GLP-1R KO mice died before 20 weeks of age, associated with enlarged ceca, increased cecal water content, increased colonic expression of apical ion transporters, reduced number of goblet cells and loss of colonic epithelial integrity. Colonocytes from GLP-1R KO mice were energy-deprived and exhibited increased ER-stress; mitochondrial fragmentation, increased oxygen levels and loss of stemness. Restoring colonic energy levels either by feeding a Western-style diet or colonization with a normal gut microbiota normalized gut phenotypes and prevented lethality. CONCLUSIONS: Our findings reveal a heretofore unrecognized role for GLP-1R signaling in the maintenance of colonic physiology and survival during energy deprivation.


Asunto(s)
Colon , Metabolismo Energético , Microbioma Gastrointestinal , Receptor del Péptido 1 Similar al Glucagón , Células Caliciformes , Ratones Noqueados , Transducción de Señal , Animales , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Microbioma Gastrointestinal/fisiología , Ratones , Células Caliciformes/metabolismo , Colon/metabolismo , Colon/microbiología , Ratones Endogámicos C57BL , Masculino , Femenino , Péptido 1 Similar al Glucagón/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...