Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int Dent J ; 73(3): 346-353, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36175203

RESUMEN

The aim of this review is to evaluate the possibility of delivering a silver-acid complex via a Trojan-horse mechanism for managing periodontits. We theroised that the complex could be an effective treatment option for bacterial inflammatory processes in the oral cavity. Searches were conducted using MEDLINE, Embase, Web of Science Core Collection, and Google Scholar search engines. We also reviewed several reference lists of the included studies or relevant reviews identified by the search. By using Medical Subject Headings (MeSH) terminology, a comprehensive search was performed for the following keywords: silver, folic acid, periodontitis, macrophages, Trojan-horse mechanism, toxicity, and targeting. Using the keywords mentioned earlier, we selected 110 articles and after appropriate elimination the review was written based on 37 papers. Accordingly the we noted that silver isons were an effective approach to kill oral pathogens. Secondly the Trojan-horse mechanism. could be used by macrophages (as the Trojan horse) to deliver silver ions in large quantities to the inflammatory focus to kill the periodontopathogens. The Trojan-horse mechanism has never been described in the field of dentistry before. The proposed novel approach using the principle of Trojan Horse delivery of drugs/chemicals could be used to manage oral inflammatory conditions. This method can be used to supplement regular treatments.


Asunto(s)
Periodontitis , Plata , Humanos , Plata/uso terapéutico , Sistemas de Liberación de Medicamentos , Motor de Búsqueda , Periodontitis/tratamiento farmacológico
2.
Clin Oral Investig ; 26(6): 4559-4574, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35257248

RESUMEN

OBJECTIVES: The gingiva epithelium accounts for a significant proportion of the surface around the tooth. An inflammatory reaction occurs in the presence of bacterial biofilm, adhesion is reduced, and the depth of the sulcus gingivalis increases. The most common antiseptic agents in oral rinses are chlorhexidine digluconate (CHX) and cetylpyridinium chloride. We examined long-lasting effects of residual concentrations of eight commercially available rinses. Our main goals were (i) to analyze the effect of different chemical compositions on cell proliferation, (ii) to examine apoptosis, and (iii) cell morphology on human epithelial progenitor cell line (HGEPp). MATERIALS AND METHODS: Cell proliferation was measured in a real-time system (0-48 h) by impedimetry (xCELLigence). Apoptosis was measured with labeled Annexin-V (BD-FACScalibur). RESULTS: Changes in proliferation were measured at certain concentrations: (i) H2O2 proved to be cytotoxic at almost all concentrations; (ii) low concentrations of CHX (0.0001%; 0.0003%) were proliferation inducers, while higher concentrations were cytotoxic; (iii) for ClO2, advantageous proliferative effect was observed over a broad concentration range (0.06-6 ppm). In mouthwashes, additives in the formulation (e.g., allantoin) appeared to influence cellular responses positively. Apoptosis marker assay results suggested a low-level activation by the tested agents. CONCLUSIONS: Mouthwashes and their reference compounds proved to have concentration-dependent cytotoxic effects on human gingival epithelial cells. CLINICAL RELEVANCE: A better understanding of the effects of mouthwashes and their reference compounds is particularly important. These concentration-dependent effects (cytotoxic or proliferation inducing) interfere with human cells physiology while being used in the fight against the pathogenic flora.


Asunto(s)
Antiinfecciosos Locales , Antisépticos Bucales , Antiinfecciosos Locales/farmacología , Clorhexidina/farmacología , Encía , Humanos , Peróxido de Hidrógeno/farmacología , Antisépticos Bucales/farmacología , Células Madre
3.
Toxicol In Vitro ; 61: 104627, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31419507

RESUMEN

The cytotoxicity of glass ionomer cements (GICs) was investigated using a novel, cost-effective, easy-to-perform and standardized test. GIC rings were made using in-house designed, custom-made moulds under sterile conditions; 10 with Fuji Equia and 10 with Fuji Triage capsules, placed in direct contact with primary human gingival fibroblasts (HGF) and immortalized human fibroblasts (HFF1). On day 1, 4, 14 and 21, an AlamarBlue® (resazurin) assay was completed towards determining the effects of the GICs on metabolic activities of the cells, whilst cell morphology was examined by light microscopy. The influence of the compounds released from the GIC rings on cell physiological effects (viability, proliferation and adhesion) during 24 h incubation was further investigated by impedimetry. Result trends obtained from this battery of techniques were complementary. At 100 v/v% concentration, the released compounds from Equia were strongly cytotoxic, while at lower concentration (0, 4, 20 v/v%) they were not cytotoxic. In contrast, Triage elicited only slightly transient cytotoxicity. The method proposed has been proved as being efficient, reliable and reproducible and may be useful in quick testing of the cytotoxicity of similar biomaterials by using an immortalized cell line.


Asunto(s)
Materiales Biocompatibles/toxicidad , Fibroblastos/efectos de los fármacos , Cementos de Ionómero Vítreo/toxicidad , Adhesión Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fibroblastos/fisiología , Humanos , Ensayo de Materiales/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...