Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Ophthalmol Sci ; 4(3): 100444, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38374928

RESUMEN

Purpose: To investigate the genetic cause, clinical characteristics, and potential therapeutic targets of infantile corneal myofibromatosis. Design: Case series with genetic and functional in vitro analyses. Participants: Four individuals from 2 unrelated families with clinical signs of corneal myofibromatosis were investigated. Methods: Exome-based panel sequencing for platelet-derived growth factor receptor beta gene (PDGFRB) and notch homolog protein 3 gene (NOTCH3) was performed in the respective index patients. One clinically affected member of each family was tested for the pathogenic variant detected in the respective index by Sanger sequencing. Immunohistochemical staining on excised corneal tissue was conducted. Functional analysis of the individual PDGFRB variants was performed in vitro by luciferase reporter assays on transfected porcine aortic endothelial cells using tyrosine kinase inhibitors. Protein expression analysis of mutated PDGFRB was analyzed by Western blot. Main Outcome Measures: Sequencing data, immunohistochemical stainings, functional analysis of PDGFRB variants, and protein expression analysis. Results: We identified 2 novel, heterozygous gain-of-function variants in PDGFRB in 4 individuals from 2 unrelated families with corneal myofibromatosis. Immunohistochemistry demonstrated positivity for alpha-smooth muscle actin and ß-catenin, a low proliferation rate in Ki-67 (< 5%), marginal positivity for Desmin, and negative staining for Caldesmon and CD34. In all patients, recurrence of disease occurred after corneal surgery. When transfected in cultured cells, the PDGFRB variants conferred a constitutive activity to the receptor in the absence of its ligand and were sensitive to the tyrosine kinase inhibitor imatinib. The variants can both be classified as likely pathogenic regarding the American College of Medical Genetics and Genomics classification criteria. Conclusions: We describe 4 cases of corneal myofibromatosis caused by novel PDGFRB variants with autosomal dominant transmission. Imatinib sensitivity in vitro suggests perspectives for targeted therapy preventing recurrences in the future. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

2.
Orphanet J Rare Dis ; 16(1): 215, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980297

RESUMEN

BACKGROUND: Cobalamin (cbl)-related remethylation disorders are a heterogeneous group of inherited disorders comprising the remethylation of homocysteine to methionine and affecting multiple organ systems, most prominently the nervous system and the bone marrow. To date, the parenteral, generally intramuscular, lifelong administration of hydroxycobalamin (OHCbl) is the mainstay of therapy in these disorders. The dosage and frequency of OHCbl is titrated in each patient to the minimum effective dose in order to account for the painful injections. This may result in undertreatment, a possible risk factor for disease progression and disease-related complications. RESULTS: We describe parenteral administration of OHCbl using a subcutaneous catheter together with a portable infusion pump in a home therapy setting in four pediatric patients with remethylation disorders, two patients with cblC, one patient with cblG, and one patient with cblE deficiency, in whom intramuscular injections were not or no longer feasible. The placement of the subcutaneous catheters and handling of the infusion pump were readily accomplished and well accepted by the patients and their families. No adverse events occurred. The use of a small, portable syringe driver pump allowed for a most flexible administration of OHCbl in everyday life. The concentrations of total homocysteine levels were determined at regular patient visits and remained within the therapeutic target range. This approach allowed for the continuation of OHCbl therapy or the adjustment of therapy required to improve metabolic control in our patients. CONCLUSIONS: Subcutaneous infusion using a subcutaneous catheter system and a portable pump for OHCbl administration in combined and isolated remethylation disorders is safe, acceptable, and effective. It decreases disease burden in preventing frequent single injections and providing patient independence. Thus, it may promote long-term adherence to therapy in patients and parents.


Asunto(s)
Metionina , Vitamina B 12 , Niño , Progresión de la Enfermedad , Humanos , Bombas de Infusión , Inyecciones Intramusculares
3.
Orphanet J Rare Dis ; 16(1): 136, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33736665

RESUMEN

BACKGROUND: An identical homozygous missense variant in EIF3F, identified through a large-scale genome-wide sequencing approach, was reported as causative in nine individuals with a neurodevelopmental disorder, characterized by variable intellectual disability, epilepsy, behavioral problems and sensorineural hearing-loss. To refine the phenotypic and molecular spectrum of EIF3F-related neurodevelopmental disorder, we examined independent patients. RESULTS: 21 patients were homozygous and one compound heterozygous for c.694T>G/p.(Phe232Val) in EIF3F. Haplotype analyses in 15 families suggested that c.694T>G/p.(Phe232Val) was a founder variant. All affected individuals had developmental delays including delayed speech development. About half of the affected individuals had behavioral problems, altered muscular tone, hearing loss, and short stature. Moreover, this study suggests that microcephaly, reduced sensitivity to pain, cleft lip/palate, gastrointestinal symptoms and ophthalmological symptoms are part of the phenotypic spectrum. Minor dysmorphic features were observed, although neither the individuals' facial nor general appearance were obviously distinctive. Symptoms in the compound heterozygous individual with an additional truncating variant were at the severe end of the spectrum in regard to motor milestones, speech delay, organic problems and pre- and postnatal growth of body and head, suggesting some genotype-phenotype correlation. CONCLUSIONS: Our study refines the phenotypic and expands the molecular spectrum of EIF3F-related syndromic neurodevelopmental disorder.


Asunto(s)
Labio Leporino , Fisura del Paladar , Discapacidad Intelectual , Microcefalia , Trastornos del Neurodesarrollo , Factor 3 de Iniciación Eucariótica , Humanos , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética
4.
Br J Cancer ; 123(4): 619-623, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32451468

RESUMEN

BACKGROUND: Beckwith-Wiedemann syndrome (BWS) is a cancer predisposition syndrome caused by defects on chromosome 11p15.5. The quantitative cancer risks in BWS patients depend on the underlying (epi)genotype but have not yet been assessed in a population-based manner. METHODS: We identified a group of 321 individuals with a molecularly confirmed diagnosis of BWS and analysed the cancer incidence up to age 15 years and cancer spectrum by matching their data with the German Childhood Cancer Registry. RESULTS: We observed 13 cases of cancer in the entire BWS cohort vs 0.4 expected. This corresponds to a 33-fold increased risk (standardised incidence ratio (SIR) = 32.6; 95% confidence interval = 17.3-55.7). The specific cancers included hepatoblastoma (n = 6); nephroblastoma (n = 4); astrocytoma (n = 1); neuroblastoma (n = 1) and adrenocortical carcinoma (n = 1). The cancer SIR was highest in patients with a paternal uniparental disomy of 11p15.5 (UPDpat). A high cancer risk remained when cases of cancer diagnosed prior to the BWS diagnosis were excluded. CONCLUSIONS: This study confirms an increased cancer risk in children with BWS. Our findings suggest that the highest cancer risk is associated with UPDpat. We were unable to confirm an excessive cancer risk in patients with IC1 gain of methylation (IC1-GOM) and this finding requires further investigation.


Asunto(s)
Síndrome de Beckwith-Wiedemann/genética , Cromosomas Humanos Par 11/genética , Neoplasias/epidemiología , Disomía Uniparental/genética , Adolescente , Síndrome de Beckwith-Wiedemann/epidemiología , Niño , Preescolar , Femenino , Alemania/epidemiología , Humanos , Incidencia , Lactante , Masculino , Neoplasias/clasificación , Sistema de Registros , Estudios Retrospectivos
5.
Cerebellum ; 18(5): 969-971, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31367947

RESUMEN

DYT-THAP1 dystonia is known to present a variety of clinical symptoms. To the best of our knowledge, this is the first case with DYT-THAP 1 dystonia and clinical signs of cerebellar involvement studied with transcranial magnetic stimulation in vivo. We report a case of a 51-year-old male DYT-THAP1 mutation carrier with dystonia, who additionally developed ataxia 1.5 years ago. To study cerebellar involvement in our patient, we used a TMS protocol called cerebellar inhibition (CBI). The lack of CBI in our patient strongly suggests cerebellar involvement. According to our findings, cerebellar syndrome may be part of the phenotypical spectrum of DYT-THAP1 mutations.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Cerebelo/diagnóstico por imagen , Proteínas de Unión al ADN/genética , Distonía/diagnóstico por imagen , Distonía/genética , Mutación/genética , Cerebelo/fisiopatología , Distonía/fisiopatología , Humanos , Masculino , Persona de Mediana Edad
6.
Mol Genet Genomic Med ; 7(4): e00595, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30729751

RESUMEN

BACKGROUND: Colony-stimulating factor 1 receptor is a tyrosine kinase transmembrane protein that mediates proliferation, differentiation, and survival of monocytes/macrophages and microglia. CSF1R gene mutations cause hereditary diffuse leukoencephalopathy with spheroids (HDLS), an autosomal-dominantly inherited microgliopathy, leading to early onset dementia with high lethality. METHODS: By interdisciplinary assessment of a complex neuropsychiatric condition in a 44-year old female patient, we narrowed down the genetic diagnostic to CSF1R gene sequencing. Flow cytometric analyses of uncultivated peripheral blood monocytes were conducted sequentially to measure the cell surface CSF1 receptor and autophosphorylation levels. Monocyte subpopulations were monitored during disease progression. RESULTS: We identified a novel heterozygous deletion-insertion mutation c.2527_2530delinsGGCA, p.(Ile843_Leu844delinsGlyIle) in our patient with initial signs of HDLS. Marginally elevated cell surface CSF1 receptor levels with increased Tyr723 autophosphorylation suggest an enhanced receptor activity. Furthermore, we observed a shift in monocyte subpopulations during disease course. CONCLUSION: Our data indicate a mutation-related CSF1R gain-of-function, accompanied by an altered composition of the peripheral innate immune cells in our patient with HDLS. Since pharmacological targeting of CSF1R with tyrosine kinase inhibitors prevents disease progression in mouse models of neurodegenerative disorders, a potential pharmacological benefit of CSF1R inhibition remains to be elucidated for patients with HDLS.


Asunto(s)
Mutación con Ganancia de Función , Leucoencefalopatías/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Adulto , Femenino , Heterocigoto , Humanos , Leucoencefalopatías/patología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/química , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo
7.
Head Face Med ; 15(1): 5, 2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30736811

RESUMEN

BACKGROUND: The Gorlin-Goltz syndrome is an autosomal dominant disorder characterized by keratocystic odontogenic tumors in the jaws, multiple basal cell carcinomas and skeletal abnormities. Frequently, the manifestation of the syndrome occurs in the adolescent years. CASE PRESENTATION: An 11-year-old boy was referred to our clinic due to the persistence of the lower deciduous molars. The further diagnosis revealed bilateral keratocystic odontogenic tumors in the region of teeth 33 and 45 representing a symptom of a Gorlin-Goltz syndrome. This case of the oral rehabilitation of an adolescent with bilateral keratocystic odontogenic tumors shows the approach of a multidisciplinary treatment concept including the following elements: Enucleation and bone defect augmentation using a prefabricated bone graft; distraction osteogenesis to extend the graft-block vertically after cessation of growth; accompanying orthodontic treatment, guided implant placement and prosthetic rehabilitation. Six months after implant insertion, a new keratocystic odontogenic tumor in the basal part of the left sinus maxillaris had to be removed combined with the closure of the oroantral fistula. During the follow-up period of 18 months in semi-annual intervals, the patient showed no sign of pathology. CONCLUSION: In the presented case could be shown that distraction osteogenesis of prefabricated bone blocks is possible. With a multidisciplinary approach in a long-term treatment a sufficient oral rehabilitation of the patient suffering from extended keratocystic odontogenic tumors was possible.


Asunto(s)
Síndrome del Nevo Basocelular , Tumores Odontogénicos , Osteogénesis por Distracción , Adolescente , Síndrome del Nevo Basocelular/cirugía , Humanos , Masculino , Maxilar/cirugía , Tumores Odontogénicos/cirugía
8.
Am J Hum Genet ; 102(2): 249-265, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29395072

RESUMEN

Townes-Brocks syndrome (TBS) is characterized by a spectrum of malformations in the digits, ears, and kidneys. These anomalies overlap those seen in a growing number of ciliopathies, which are genetic syndromes linked to defects in the formation or function of the primary cilia. TBS is caused by mutations in the gene encoding the transcriptional repressor SALL1 and is associated with the presence of a truncated protein that localizes to the cytoplasm. Here, we provide evidence that SALL1 mutations might cause TBS by means beyond its transcriptional capacity. By using proximity proteomics, we show that truncated SALL1 interacts with factors related to cilia function, including the negative regulators of ciliogenesis CCP110 and CEP97. This most likely contributes to more frequent cilia formation in TBS-derived fibroblasts, as well as in a CRISPR/Cas9-generated model cell line and in TBS-modeled mouse embryonic fibroblasts, than in wild-type controls. Furthermore, TBS-like cells show changes in cilia length and disassembly rates in combination with aberrant SHH signaling transduction. These findings support the hypothesis that aberrations in primary cilia and SHH signaling are contributing factors in TBS phenotypes, representing a paradigm shift in understanding TBS etiology. These results open possibilities for the treatment of TBS.


Asunto(s)
Anomalías Múltiples/genética , Ano Imperforado/genética , Cilios/metabolismo , Pérdida Auditiva Sensorineural/genética , Mutación/genética , Pulgar/anomalías , Factores de Transcripción/genética , Animales , Citoplasma/metabolismo , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Recién Nacido , Ratones , Fenotipo , Unión Proteica , Proteómica , Transducción de Señal
12.
Brain ; 140(6): 1561-1578, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28459997

RESUMEN

Despite extensive efforts, half of patients with rare movement disorders such as hereditary spastic paraplegias and cerebellar ataxias remain genetically unexplained, implicating novel genes and unrecognized mutations in known genes. Non-coding DNA variants are suspected to account for a substantial part of undiscovered causes of rare diseases. Here we identified mutations located deep in introns of POLR3A to be a frequent cause of hereditary spastic paraplegia and cerebellar ataxia. First, whole-exome sequencing findings in a recessive spastic ataxia family turned our attention to intronic variants in POLR3A, a gene previously associated with hypomyelinating leukodystrophy type 7. Next, we screened a cohort of hereditary spastic paraplegia and cerebellar ataxia cases (n = 618) for mutations in POLR3A and identified compound heterozygous POLR3A mutations in ∼3.1% of index cases. Interestingly, >80% of POLR3A mutation carriers presented the same deep-intronic mutation (c.1909+22G>A), which activates a cryptic splice site in a tissue and stage of development-specific manner and leads to a novel distinct and uniform phenotype. The phenotype is characterized by adolescent-onset progressive spastic ataxia with frequent occurrence of tremor, involvement of the central sensory tracts and dental problems (hypodontia, early onset of severe and aggressive periodontal disease). Instead of the typical hypomyelination magnetic resonance imaging pattern associated with classical POLR3A mutations, cases carrying c.1909+22G>A demonstrated hyperintensities along the superior cerebellar peduncles. These hyperintensities may represent the structural correlate to the cerebellar symptoms observed in these patients. The associated c.1909+22G>A variant was significantly enriched in 1139 cases with spastic ataxia-related phenotypes as compared to unrelated neurological and non-neurological phenotypes and healthy controls (P = 1.3 × 10-4). In this study we demonstrate that (i) autosomal-recessive mutations in POLR3A are a frequent cause of hereditary spastic ataxias, accounting for about 3% of hitherto genetically unclassified autosomal recessive and sporadic cases; and (ii) hypomyelination is frequently absent in POLR3A-related syndromes, especially when intronic mutations are present, and thus can no longer be considered as the unifying feature of POLR3A disease. Furthermore, our results demonstrate that substantial progress in revealing the causes of Mendelian diseases can be made by exploring the non-coding sequences of the human genome.


Asunto(s)
Discapacidad Intelectual/genética , Espasticidad Muscular/genética , Atrofia Óptica/genética , ARN Polimerasa III/genética , Paraplejía Espástica Hereditaria/genética , Ataxias Espinocerebelosas/genética , Anciano , Técnicas de Cultivo de Célula , Exones/genética , Femenino , Estudios de Asociación Genética , Humanos , Células Madre Pluripotentes Inducidas , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/fisiopatología , Intrones/genética , Masculino , Persona de Mediana Edad , Espasticidad Muscular/diagnóstico por imagen , Espasticidad Muscular/fisiopatología , Mutación , Atrofia Óptica/diagnóstico por imagen , Atrofia Óptica/fisiopatología , Linaje , Fenotipo , Paraplejía Espástica Hereditaria/diagnóstico por imagen , Paraplejía Espástica Hereditaria/fisiopatología , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/fisiopatología
13.
J Med Genet ; 54(1): 64-72, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27572252

RESUMEN

BACKGROUND: Disruptions of the FOXP2 gene, encoding a forkhead transcription factor, are the first known monogenic cause of a speech and language disorder. So far, mainly chromosomal rearrangements such as translocations or larger deletions affecting FOXP2 have been reported. Intragenic deletions or convincingly pathogenic point mutations in FOXP2 have up to date only been reported in three families. We thus aimed at a further characterisation of the mutational and clinical spectrum. METHODS: Chromosomal microarray testing, trio exome sequencing, multigene panel sequencing and targeted sequencing of FOXP2 were performed in individuals with variable developmental disorders, and speech and language deficits. RESULTS: We identified four different truncating mutations, two novel missense mutations within the forkhead domain and an intragenic deletion in FOXP2 in 14 individuals from eight unrelated families. Mutations occurred de novo in four families and were inherited from an affected parent in the other four. All index patients presented with various manifestations of language and speech impairment. Apart from two individuals with normal onset of speech, age of first words was between 4 and 7 years. Articulation difficulties such as slurred speech, dyspraxia, stuttering and poor pronunciation were frequently noted. Motor development was normal or only mildly delayed. Mild cognitive impairment was reported for most individuals. CONCLUSIONS: By identifying intragenic deletions or mutations in 14 individuals from eight unrelated families with variable developmental delay/cognitive impairment and speech and language deficits, we considerably broaden the mutational and clinical spectrum associated with aberrations in FOXP2.


Asunto(s)
Factores de Transcripción Forkhead/genética , Trastornos del Lenguaje/genética , Mutación Missense/genética , Mutación Puntual/genética , Eliminación de Secuencia/genética , Trastornos del Habla/genética , Discapacidades del Desarrollo/genética , Humanos , Masculino , Linaje , Habla/fisiología
14.
Am J Med Genet A ; 170(10): 2750-5, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27410998

RESUMEN

Mandibuloacral dysplasia with type B lipodystrophy is a rare autosomal recessive disease characterized by atrophic skin, lipodystrophy, and skeletal features. It is caused by mutations in ZMPSTE24, a gene encoding a zinc metalloproteinase involved in the post-translational modification of lamin. Nine distinct pathogenic variants have been identified in 11 patients from nine unrelated families with this disorder. We report a 12-year-old boy with mandibuloacral dysplasia with type B lipodystrophy and a novel homozygous c.1196A>G; p.(Tyr399Cys) mutation in ZMPSTE24. The patient had typical dermatological and skeletal features of mandibuloacral dysplasia with type B lipodystrophy, sparse hair, short stature, mild microcephaly, facial dysmorphism, and a striking failure of ossification of the interparietal region of the occipital bone, up to the position where transverse occipital suture can be observed. Newly recognized signs for mandibuloacral dysplasia with type B lipodystrophy were gaze palsy and ptosis. Delayed closure of cranial sutures and Wormian bones have been described in three patients, but an ossification failure strictly limited to the occipital bone, as seen in the present patient, appears to be unique for mandibuloacral dysplasia with type B lipodystrophy. This observation illustrates that ZMPSTE24 could play a specific role in membranous ossification in the interparietal part of the squama (Inca bone) but not in the intracartilaginous ossification of the supraoccipital. This failure of ossification in the squama appears to be a useful feature for the radiological diagnosis of mandibuloacral dysplasia with type B lipodystrophy. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Anomalías Craneofaciales/diagnóstico , Anomalías Craneofaciales/genética , Lipodistrofia/diagnóstico , Lipodistrofia/genética , Hueso Occipital/patología , Osteogénesis/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Biopsia , Huesos/patología , Niño , Facies , Estudios de Asociación Genética , Homocigoto , Humanos , Masculino , Proteínas de la Membrana/genética , Metaloendopeptidasas/genética , Mutación , Fenotipo , Radiografía , Piel/metabolismo , Tomografía Computarizada por Rayos X
15.
Mol Syndromol ; 7(1): 26-31, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27194970

RESUMEN

Lipoid proteinosis (LP) is an autosomal recessive genodermatosis known to be caused by mutations in ECM1. Nonsense and missense mutations are the most common variations in LP. Up to date, only 6 splice site mutations have been observed. We report on a 26-year-old female LP patient from a Turkish consanguineous family carrying a novel homozygous splice site mutation in intron 8 of the ECM1 gene and summarize the current knowledge on ECM1 mutations and possible genotype-phenotype correlations.

17.
J Invest Dermatol ; 136(5): 920-929, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26827766

RESUMEN

Kindler syndrome, a distinct type of epidermolysis bullosa, is a rare disorder caused by mutations in FERMT1, encoding kindlin-1. Most FERMT1 mutations lead to premature termination codons and absence of kindlin-1. Here we investigated the molecular and cellular consequences of a naturally occurring FERMT1 mutation, c.299_301del resulting in a single amino acid deletion, p.R100del. The mutation led to a 50% reduction of FERMT1 mRNA and 90% reduction of kindlin-1 protein in keratinocytes derived from the patient, as compared with control cells. The misfolded p.R100del kindlin-1 mutant was lysosomally degraded and launched a homeostatic unfolded protein response. Sodium-phenylbutyrate significantly increased kindlin-1 mRNA and protein levels and the area of mutant cells, acting as a chemical chaperone and probably also as a histone deacetylase inhibitor. In a recombinant system, low levels of wild-type or p.R100del mutant kindlin-1 were sufficient to improve the cellular phenotype in respect of spreading and proliferation as compared with kindlin-1 negative keratinocytes. The study of this hypomorphic mutation provides evidence that low amounts of kindlin-1 are sufficient to improve the epidermal architecture and Kindler syndrome cellular phenotype and proposes a personalized chaperone therapy for the patient.


Asunto(s)
Vesícula/genética , Epidermólisis Ampollosa/genética , Queratinocitos/citología , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Enfermedades Periodontales/genética , Trastornos por Fotosensibilidad/genética , Eliminación de Secuencia/genética , Secuencia de Aminoácidos , Vesícula/fisiopatología , Proliferación Celular/genética , Células Cultivadas , Epidermólisis Ampollosa/fisiopatología , Predisposición Genética a la Enfermedad , Humanos , Immunoblotting , Queratinocitos/fisiología , Chaperonas Moleculares/metabolismo , Mutación , Enfermedades Periodontales/fisiopatología , Trastornos por Fotosensibilidad/fisiopatología , ARN Mensajero/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Sensibilidad y Especificidad
18.
Cancer Lett ; 370(2): 275-8, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26577641

RESUMEN

DICER1, a RNAse endonuclease involved in the processing of siRNA and microRNA, is known to play a pivotal role in the post-transcriptional regulation of gene expression. Germ line mutations in the DICER1 gene increase the risk for different types of tumors. At present, DICER1 syndrome is an established, though not well defined, member of the group of genetic tumor predisposition syndromes. Here, we report a DICER1 syndrome family with a medical history of different rare tumors mostly occurring at a young age. The tumor spectrum in this family included both DICER1 syndrome-typical forms, such as pleuropulmonary blastoma, multinodular goiter, and cystic nephroma, and not previously reported manifestations, such as pilomatrixoma, and juvenile basal cell carcinoma. The latter tumor types are usually considered to be indicators of familial adenomatous polyposis and basal cell nevus syndrome.


Asunto(s)
ARN Helicasas DEAD-box/genética , Predisposición Genética a la Enfermedad , Mutación , Neoplasias/genética , Ribonucleasa III/genética , Adolescente , Adulto , Femenino , Genes APC , Humanos , Masculino , Persona de Mediana Edad , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...