Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 3331, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30127397

RESUMEN

De novo DNA methylation (DNAme) during mouse oogenesis occurs within transcribed regions enriched for H3K36me3. As many oocyte transcripts originate in long terminal repeats (LTRs), which are heterogeneous even between closely related mammals, we examined whether species-specific LTR-initiated transcription units (LITs) shape the oocyte methylome. Here we identify thousands of syntenic regions in mouse, rat, and human that show divergent DNAme associated with private LITs, many of which initiate in lineage-specific LTR retrotransposons. Furthermore, CpG island (CGI) promoters methylated in mouse and/or rat, but not human oocytes, are embedded within rodent-specific LITs and vice versa. Notably, at a subset of such CGI promoters, DNAme persists on the maternal genome in fertilized and parthenogenetic mouse blastocysts or in human placenta, indicative of species-specific epigenetic inheritance. Polymorphic LITs are also responsible for disparate DNAme at promoter CGIs in distantly related mouse strains, revealing that LITs also promote intra-species divergence in CGI DNAme.


Asunto(s)
Metilación de ADN/genética , Patrón de Herencia/genética , Oocitos/metabolismo , Retroelementos/genética , Secuencias Repetidas Terminales/genética , Transcripción Genética , Animales , Islas de CpG/genética , ADN Intergénico/genética , Fertilización/genética , Regulación de la Expresión Génica , Humanos , Mamíferos/metabolismo , Ratones Endogámicos C57BL , Polimorfismo Genético , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Especificidad de la Especie , Sintenía/genética
2.
BMC Genomics ; 19(1): 463, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29907088

RESUMEN

BACKGROUND: Allele-specific transcriptional regulation, including of imprinted genes, is essential for normal mammalian development. While the regulatory regions controlling imprinted genes are associated with DNA methylation (DNAme) and specific histone modifications, the interplay between transcription and these epigenetic marks at allelic resolution is typically not investigated genome-wide due to a lack of bioinformatic packages that can process and integrate multiple epigenomic datasets with allelic resolution. In addition, existing ad-hoc software only consider SNVs for allele-specific read discovery. This limitation omits potentially informative INDELs, which constitute about one fifth of the number of SNVs in mice, and introduces a systematic reference bias in allele-specific analyses. RESULTS: Here, we describe MEA, an INDEL-aware Methylomic and Epigenomic Allele-specific analysis pipeline which enables user-friendly data exploration, visualization and interpretation of allelic imbalance. Applying MEA to mouse embryonic datasets yields robust allele-specific DNAme maps and low reference bias. We validate allele-specific DNAme at known differentially methylated regions and show that automated integration of such methylation data with RNA- and ChIP-seq datasets yields an intuitive, multidimensional view of allelic gene regulation. MEA uncovers numerous novel dynamically methylated loci, highlighting the sensitivity of our pipeline. Furthermore, processing and visualization of epigenomic datasets from human brain reveals the expected allele-specific enrichment of H3K27ac and DNAme at imprinted as well as novel monoallelically expressed genes, highlighting MEA's utility for integrating human datasets of distinct provenance for genome-wide analysis of allelic phenomena. CONCLUSIONS: Our novel pipeline for standardized allele-specific processing and visualization of disparate epigenomic and methylomic datasets enables rapid analysis and navigation with allelic resolution. MEA is freely available as a Docker container at https://github.com/julienrichardalbert/MEA .


Asunto(s)
Alelos , Metilación de ADN , Epigénesis Genética , Epigenómica/métodos , Programas Informáticos , Animales , Inmunoprecipitación de Cromatina , Islas de CpG , Perfilación de la Expresión Génica , Células Germinativas/metabolismo , Humanos , Mutación INDEL , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Sitio de Iniciación de la Transcripción
3.
Genes Cells ; 21(11): 1209-1222, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27696608

RESUMEN

Whole-genome shotgun bisulfite sequencing (WG-SBS) is currently the most powerful tool available for understanding genomewide cytosine methylation with single-base resolution; however, the high sequencing cost limits its widespread application, particularly for mammalian genomes. We mapped high- to low-coverage SBS short reads of mouse and human female developing germ cells to consensus sequences of repetitive elements that were multiplied in the respective host genome. This mapping strategy effectively identified active and evolutionarily young retrotransposon subfamilies and centromeric satellite repeats that were resistant to DNA demethylation during the investigated progressive stages of germ cell development. Notably, quantities of only tens of thousands of uniquely mapped reads provided sufficient sensitivity to allow for methylation analyses of multiple retrotransposons and satellite repeats in mice. Furthermore, we produced SBS results from single female murine germ cells by an improved multiplexing and amplification-free SBS method (scPBAT). The scPBAT results quantitatively provided ≥5× sequencing coverage for at least 30 repeats, and the individual methylation patterns detected were similar to the bulk cell-based results. Our single-cell methylome sequencing technique will allow researchers to investigate intergenic methylation characteristics from limited amounts of mammalian cells as well as cells from other organisms with genomic annotations.


Asunto(s)
Metilación de ADN , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN/métodos , Animales , Mapeo Cromosómico , Femenino , Biblioteca de Genes , Humanos , Ratones , Ratones Endogámicos C57BL , Óvulo/citología , Sulfitos
4.
Biol Reprod ; 94(6): 128, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27103445

RESUMEN

The germ line reprogramming barrier resets parental epigenetic modifications according to sex, conferring totipotency to mammalian embryos upon fertilization. However, it is not known whether epigenetic errors are committed during germ line reprogramming that are then transmitted to germ cells, and consequently to offspring. We addressed this question in the present study by performing a genome-wide DNA methylation analysis using a target postbisulfite sequencing method in order to identify DNA methylation errors in cloned mouse sperm. The sperm genomes of two somatic cell-cloned mice (CL1 and CL7) contained significantly higher numbers of differentially methylated CpG sites (P = 0.0045 and P = 0.0116). As a result, they had higher numbers of differentially methylated CpG islands. However, there was no evidence that these sites were transmitted to the sperm genome of offspring. These results suggest that DNA methylation errors resulting from embryo cloning are transmitted to the sperm genome by evading the germ line reprogramming barrier.


Asunto(s)
Clonación de Organismos , Metilación de ADN , Epigénesis Genética , Espermatozoides/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...