Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(3): 1713-1730, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38534727

RESUMEN

The persistent threat of cancer remains a significant hurdle for global health, prompting the exploration of innovative approaches in the quest for successful therapeutic interventions. Cyclin-dependent kinase 9 (CDK9), a central player in transcription regulation and cell cycle progression, has emerged as a promising target to combat cancer. Its pivotal role in oncogenic pathways and the pressing need for novel cancer treatments has propelled CDK9 into the spotlight of drug discovery efforts. This article presents a comprehensive study that connects a multidisciplinary approach, combining computational methodologies, experimental validation, and the transformative Proteolysis-Targeting Chimera (PROTAC) technology. By uniting these diverse techniques, we aim to identify, characterize, and optimize a new class of degraders targeting CDK9. We explore these compounds for targeted protein degradation, offering a novel and potentially effective approach to cancer therapy. This cohesive strategy utilizes the combination of computational predictions and experimental insights, with the goal of advancing the development of effective anticancer therapeutics, targeting CDK9.

2.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34361043

RESUMEN

Intravesicular pH plays a crucial role in melanosome maturation and function. Melanosomal pH changes during maturation from very acidic in the early stages to neutral in late stages. Neutral pH is critical for providing optimal conditions for the rate-limiting, pH-sensitive melanin-synthesizing enzyme tyrosinase (TYR). This dramatic change in pH is thought to result from the activity of several proteins that control melanosomal pH. Here, we computationally investigated the pH-dependent stability of several melanosomal membrane proteins and compared them to the pH dependence of the stability of TYR. We confirmed that the pH optimum of TYR is neutral, and we also found that proteins that are negative regulators of melanosomal pH are predicted to function optimally at neutral pH. In contrast, positive pH regulators were predicted to have an acidic pH optimum. We propose a competitive mechanism among positive and negative regulators that results in pH equilibrium. Our findings are consistent with previous work that demonstrated a correlation between the pH optima of stability and activity, and they are consistent with the expected activity of positive and negative regulators of melanosomal pH. Furthermore, our data suggest that disease-causing variants impact the pH dependence of melanosomal proteins; this is particularly prominent for the OCA2 protein. In conclusion, melanosomal pH appears to affect the activity of multiple melanosomal proteins.


Asunto(s)
Antígenos de Neoplasias/química , ATPasas Transportadoras de Cobre/química , Melanosomas/metabolismo , Proteínas de Transporte de Membrana/química , Simulación de Dinámica Molecular , Monofenol Monooxigenasa/química , Protones , Antígenos de Neoplasias/metabolismo , ATPasas Transportadoras de Cobre/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Melanosomas/química , Proteínas de Transporte de Membrana/metabolismo , Monofenol Monooxigenasa/metabolismo , Estabilidad Proteica
3.
J Comput Chem ; 40(28): 2502-2508, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31237360

RESUMEN

Electrostatic potential, energies, and forces affect virtually any process in molecular biology, however, computing these quantities is a difficult task due to irregularly shaped macromolecules and the presence of water. Here, we report a new edition of the popular software package DelPhi along with describing its functionalities. The new DelPhi is a C++ object-oriented package supporting various levels of multiprocessing and memory distribution. It is demonstrated that multiprocessing results in significant improvement of computational time. Furthermore, for computations requiring large grid size (large macromolecular assemblages), the approach of memory distribution is shown to reduce the requirement of RAM and thus permitting large-scale modeling to be done on Linux clusters with moderate architecture. The new release comes with new features, whose functionalities and applications are described as well. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.


Asunto(s)
Programas Informáticos , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...