Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Trends Biotechnol ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480025

RESUMEN

In pathology and biomedical research, histology is the cornerstone method for tissue analysis. Currently, the histological workflow consumes plenty of chemicals, water, and time for staining procedures. Deep learning is now enabling digital replacement of parts of the histological staining procedure. In virtual staining, histological stains are created by training neural networks to produce stained images from an unstained tissue image, or through transferring information from one stain to another. These technical innovations provide more sustainable, rapid, and cost-effective alternatives to traditional histological pipelines, but their development is in an early phase and requires rigorous validation. In this review we cover the basic concepts of virtual staining for histology and provide future insights into the utilization of artificial intelligence (AI)-enabled virtual histology.

2.
Cancer Cell Int ; 24(1): 29, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218884

RESUMEN

PURPOSE: Platinum-based drugs are cytotoxic drugs commonly used in cancer treatment. They cause DNA damage, effects of which on chromatin and cellular responses are relatively well described. Yet, the nuclear stress responses related to RNA processing are incompletely known and may be relevant for the heterogeneity with which cancer cells respond to these drugs. Here, we determine the type and extent of nuclear stress responses of prostate cancer cells to clinically relevant platinum drugs. METHODS: We study nucleolar and Cajal body (CB) responses to cisplatin, carboplatin, and oxaliplatin with immunofluorescence-based methods in prostate cancer cells. We utilize organelle-specific markers NPM, Fibrillarin, Coilin, and SMN1, and study CB-regulatory proteins FUS and TDP-43 using siRNA-mediated downregulation. RESULTS: Different types of prostate cancer cells have different sensitivities to platinum drugs. With equally cytotoxic doses, cisplatin, and oxaliplatin induce prominent nucleolar and CB stress responses while the nuclear stress phenotypes to carboplatin are milder. We find that Coilin is a stress-specific marker for platinum drug response heterogeneity. We also find that CB-associated, stress-responsive RNA binding proteins FUS and TDP-43 control Coilin and CB biology in prostate cancer cells and, further, that TDP-43 is associated with stress-responsive CBs in prostate cancer cells. CONCLUSION: Our findings provide insight into the heterologous responses of prostate cancer cells to different platinum drug treatments and indicate Coilin and TDP-43 as stress mediators in the varied outcomes. These results help understand cancer drug responses at a cellular level and have implications in tackling heterogeneity in cancer treatment outcomes.

3.
Med Image Anal ; 90: 102940, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37666115

RESUMEN

Cross-modality image synthesis is an active research topic with multiple medical clinically relevant applications. Recently, methods allowing training with paired but misaligned data have started to emerge. However, no robust and well-performing methods applicable to a wide range of real world data sets exist. In this work, we propose a generic solution to the problem of cross-modality image synthesis with paired but non-aligned data by introducing new deformation equivariance encouraging loss functions. The method consists of joint training of an image synthesis network together with separate registration networks and allows adversarial training conditioned on the input even with misaligned data. The work lowers the bar for new clinical applications by allowing effortless training of cross-modality image synthesis networks for more difficult data sets.

4.
Sci Data ; 10(1): 562, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620357

RESUMEN

The analysis of FFPE tissue sections stained with haematoxylin and eosin (H&E) or immunohistochemistry (IHC) is essential for the pathologic assessment of surgically resected breast cancer specimens. IHC staining has been broadly adopted into diagnostic guidelines and routine workflows to assess the status of several established biomarkers, including ER, PGR, HER2 and KI67. Biomarker assessment can also be facilitated by computational pathology image analysis methods, which have made numerous substantial advances recently, often based on publicly available whole slide image (WSI) data sets. However, the field is still considerably limited by the sparsity of public data sets. In particular, there are no large, high quality publicly available data sets with WSIs of matching IHC and H&E-stained tissue sections from the same tumour. Here, we publish the currently largest publicly available data set of WSIs of tissue sections from surgical resection specimens from female primary breast cancer patients with matched WSIs of corresponding H&E and IHC-stained tissue, consisting of 4,212 WSIs from 1,153 patients.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Mama , Neoplasias de la Mama/diagnóstico , Colorantes , Eosina Amarillenta-(YS) , Hematoxilina , Coloración y Etiquetado
5.
Cancer Rep (Hoboken) ; 6(10): e1886, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37591798

RESUMEN

BACKGROUND: Accumulating evidence indicates importance of RNA regulation in cancer. This includes events such as splicing, translation, and regulation of noncoding RNAs, functions which are governed by RNA binding proteins (RBPs). AIMS: To find which RBPs could be relevant for prostate cancer, we performed systematic screening of RBP expression in clinical prostate cancer. METHODS AND RESULTS: We interrogated four proteome-wide proteomics datasets including tumor samples of primary, castration resistant, and metastatic prostate cancer. We found that, while the majority of RBPs are expressed but not significantly altered during prostate cancer development and progression, expression of several RBPs increases in advanced disease. Interestingly, most of the differentially expressed RBPs are not targets of differential posttranscriptional phosphorylation during disease progression. The RBPs undergoing expression changes have functions in, especially, poly(A)-RNA binding, nucleocytoplasmic transport, and cellular stress responses, suggesting that these may play a role in formation of castration resistance. Pathway analyzes indicate that increased ribosome production and chromatin-related functions of RBPs are also linked to castration resistant and metastatic prostate cancers. We selected a group of differentially expressed RBPs and studied their role in cultured prostate cancer cells. With siRNA screens, several of these were indicated in survival (DDX6, EIF4A3, PABPN1), growth (e.g., EIF5A, HNRNPH2, LRRC47, and NVL), and migration (e.g., NOL3 and SLTM) of prostate cancer cells. Our analyzes further show that RRP9, a U3 small nucleolar protein essential for ribosome formation, undergoes changes at protein level during metastasis in prostate cancer. CONCLUSION: In this work, we recognized significant molecular alterations in RBP profiles during development and evolution of prostate cancer. Our study further indicates several functionally significant RBPs warranting further investigation for their functions and possible targetability in prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Proteoma , Masculino , Humanos , Proteoma/metabolismo , Proteómica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Neoplasias de la Próstata/genética , ARN Interferente Pequeño , Factor 4A Eucariótico de Iniciación/metabolismo , ARN Helicasas DEAD-box/metabolismo , Proteína I de Unión a Poli(A)
6.
Patterns (N Y) ; 4(5): 100725, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37223268

RESUMEN

Conventional histopathology has relied on chemical staining for over a century. The staining process makes tissue sections visible to the human eye through a tedious and labor-intensive procedure that alters the tissue irreversibly, preventing repeated use of the sample. Deep learning-based virtual staining can potentially alleviate these shortcomings. Here, we used standard brightfield microscopy on unstained tissue sections and studied the impact of increased network capacity on the resulting virtually stained H&E images. Using the generative adversarial neural network model pix2pix as a baseline, we observed that replacing simple convolutions with dense convolution units increased the structural similarity score, peak signal-to-noise ratio, and nuclei reproduction accuracy. We also demonstrated highly accurate reproduction of histology, especially with increased network capacity, and demonstrated applicability to several tissues. We show that network architecture optimization can improve the image translation accuracy of virtual H&E staining, highlighting the potential of virtual staining in streamlining histopathological analysis.

7.
Lab Invest ; 103(5): 100070, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36801642

RESUMEN

Tissue structures, phenotypes, and pathology are routinely investigated based on histology. This includes chemically staining the transparent tissue sections to make them visible to the human eye. Although chemical staining is fast and routine, it permanently alters the tissue and often consumes hazardous reagents. On the other hand, on using adjacent tissue sections for combined measurements, the cell-wise resolution is lost owing to sections representing different parts of the tissue. Hence, techniques providing visual information of the basic tissue structure enabling additional measurements from the exact same tissue section are required. Here we tested unstained tissue imaging for the development of computational hematoxylin and eosin (HE) staining. We used unsupervised deep learning (CycleGAN) and whole slide images of prostate tissue sections to compare the performance of imaging tissue in paraffin, as deparaffinized in air, and as deparaffinized in mounting medium with section thicknesses varying between 3 and 20 µm. We showed that although thicker sections increase the information content of tissue structures in the images, thinner sections generally perform better in providing information that can be reproduced in virtual staining. According to our results, tissue imaged in paraffin and as deparaffinized provides a good overall representation of the tissue for virtually HE-stained images. Further, using a pix2pix model, we showed that the reproduction of overall tissue histology can be clearly improved with image-to-image translation using supervised learning and pixel-wise ground truth. We also showed that virtual HE staining can be used for various tissues and used with both 20× and 40× imaging magnifications. Although the performance and methods of virtual staining need further development, our study provides evidence of the feasibility of whole slide unstained microscopy as a fast, cheap, and feasible approach to producing virtual staining of tissue histology while sparing the exact same tissue section ready for subsequent utilization with follow-up methods at single-cell resolution.


Asunto(s)
Microscopía , Parafina , Masculino , Humanos , Hematoxilina , Eosina Amarillenta-(YS) , Microscopía/métodos , Coloración y Etiquetado
8.
Results Probl Cell Differ ; 70: 469-494, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36348119

RESUMEN

In this chapter, we discuss the nuclear organization and how it responds to different types of stress. A key component in these responses is molecular traffic between the different sub-nucleolar compartments, such as nucleoplasm, chromatin, nucleoli, and various speckle and body compartments. This allows specific repair and response activities in locations where they normally are not active and serve to halt sensitive functions until the stress insult passes and inflicted damage has been repaired. We focus on mammalian cells and their nuclear organization, especially describing the central role of the nucleolus in nuclear stress responses. We describe events after multiple stress types, including DNA damage, various drugs, and toxic compounds, and discuss the involvement of macromolecular traffic between dynamic, phase-separated nuclear organelles and foci. We delineate the key proteins and non-coding RNA in the formation of stress-responsive, non-membranous nuclear organelles, many of which are relevant to the formation of and utilization in cancer treatment.


Asunto(s)
Nucléolo Celular , Núcleo Celular , Animales , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Cromatina/metabolismo , Mamíferos/genética
9.
Oncogenesis ; 11(1): 11, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35228520

RESUMEN

miR-32 is an androgen receptor (AR)-regulated microRNA, expression of which is increased in castration-resistant prostate cancer (PC). We have previously shown that overexpression of miR-32 in the prostate of transgenic mice potentiates proliferation in prostate epithelium. Here, we set out to determine whether increased expression of miR-32 influences growth or phenotype in prostate adenocarcinoma in vivo. We studied transgenic mice expressing MYC oncogene (hiMYC mice) to induce tumorigenesis in the mouse prostate and discovered that transgenic overexpression of miR-32 resulted in increased tumor burden as well as a more aggressive tumor phenotype in this model. Elevated expression of miR-32 increased proliferation as assessed by Ki-67 immunohistochemistry, increased nuclear density, and higher mitotic index in the tumors. By gene expression analysis of the tumorous prostate tissue, we confirmed earlier findings that miR-32 expression regulates prostate secretome by modulating expression levels of several PC-related target genes such as Spink1, Spink5, and Msmb. Further, we identified Pdk4 as a tumor-associated miR-32 target in the mouse prostate. Expression analysis of PDK4 in human PC reveals an inverse correlation with miR-32 expression and Gleason score, a decrease in castration-resistant and metastatic tumors compared to untreated primary PC, and an association of low PDK4 expression with a shorter recurrence-free survival of patients. Although decreased PDK4 expression induces the higher metabolic activity of PC cells, induced expression of PDK4 reduces both mitotic respiration and glycolysis rates as well as inhibits cell growth. In conclusion, we show that miR-32 promotes MYC-induced prostate adenocarcinoma and identifies PDK4 as a PC-relevant metabolic target of miR-32-3p.

10.
ACS Chem Biol ; 17(3): 680-700, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35199530

RESUMEN

Background: Lower survival rates for many cancer types correlate with changes in nuclear size/scaling in a tumor-type/tissue-specific manner. Hypothesizing that such changes might confer an advantage to tumor cells, we aimed at the identification of commercially available compounds to guide further mechanistic studies. We therefore screened for Food and Drug Administration (FDA)/European Medicines Agency (EMA)-approved compounds that reverse the direction of characteristic tumor nuclear size changes in PC3, HCT116, and H1299 cell lines reflecting, respectively, prostate adenocarcinoma, colonic adenocarcinoma, and small-cell squamous lung cancer. Results: We found distinct, largely nonoverlapping sets of compounds that rectify nuclear size changes for each tumor cell line. Several classes of compounds including, e.g., serotonin uptake inhibitors, cyclo-oxygenase inhibitors, ß-adrenergic receptor agonists, and Na+/K+ ATPase inhibitors, displayed coherent nuclear size phenotypes focused on a particular cell line or across cell lines and treatment conditions. Several compounds from classes far afield from current chemotherapy regimens were also identified. Seven nuclear size-rectifying compounds selected for further investigation all inhibited cell migration and/or invasion. Conclusions: Our study provides (a) proof of concept that nuclear size might be a valuable target to reduce cell migration/invasion in cancer treatment and (b) the most thorough collection of tool compounds to date reversing nuclear size changes specific to individual cancer-type cell lines. Although these compounds still need to be tested in primary cancer cells, the cell line-specific nuclear size and migration/invasion responses to particular drug classes suggest that cancer type-specific nuclear size rectifiers may help reduce metastatic spread.


Asunto(s)
Adenocarcinoma , Neoplasias de la Próstata , Línea Celular Tumoral , Movimiento Celular , Humanos , Masculino , Invasividad Neoplásica/genética , Invasividad Neoplásica/prevención & control , Neoplasias de la Próstata/tratamiento farmacológico
11.
Front Cell Dev Biol ; 9: 623809, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33634124

RESUMEN

Androgens are steroid hormones governing the male reproductive development and function. As such, androgens and the key mediator of their effects, androgen receptor (AR), have a leading role in many diseases. Prostate cancer is a major disease where AR and its transcription factor function affect a significant number of patients worldwide. While disease-related AR-driven transcriptional programs are connected to the presence and activity of the receptor itself, also novel modes of transcriptional regulation by androgens are exploited by cancer cells. One of the most intriguing and ingenious mechanisms is to bring previously unconnected genes under the control of AR. Most often this occurs through genetic rearrangements resulting in fusion genes where an androgen-regulated promoter area is combined to a protein-coding area of a previously androgen-unaffected gene. These gene fusions are distinctly frequent in prostate cancer compared to other common solid tumors, a phenomenon still requiring an explanation. Interestingly, also another mode of connecting androgen regulation to a previously unaffected gene product exists via transcriptional read-through mechanisms. Furthermore, androgen regulation of fusion genes and transcripts is not linked to only protein-coding genes. Pseudogenes and non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) can also be affected by androgens and de novo functions produced. In this review, we discuss the prevalence, molecular mechanisms, and functional evidence for androgen-regulated prostate cancer fusion genes and transcripts. We also discuss the clinical relevance of especially the most common prostate cancer fusion gene TMPRSS2-ERG, as well as present open questions of prostate cancer fusions requiring further investigation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA