Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 9(15): 13742-13750, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28350452

RESUMEN

The most recent and innovative silicon carbide (SiC) fiber ceramic matrix composites, used for lightweight high-heat engine parts in aerospace applications, are woven, layered, and then surrounded by a SiC ceramic matrix composite (CMC). To further improve both the mechanical properties and thermal and oxidative resistance abilities of this material, SiC nanotubes and nanowires (SiCNT/NWs) are grown on the surface of the SiC fiber via carbon nanotube conversion. This conversion utilizes the shape memory synthesis (SMS) method, starting with carbon nanotube (CNT) growth on the SiC fiber surface, to capitalize on the ease of dense surface morphology optimization and the ability to effectively engineer the CNT-SiC fiber interface to create a secure nanotube-fiber attachment. Then, by converting the CNTs to SiCNT/NWs, the relative morphology, advantageous mechanical properties, and secure connection of the initial CNT-SiC fiber architecture are retained, with the addition of high temperature and oxidation resistance. The resultant SiCNT/NW-SiC fiber can be used inside the SiC ceramic matrix composite for a high-heat turbo engine part with longer fatigue life and higher temperature resistance. The differing sides of the woven SiCNT/NWs act as the "hook and loop" mechanism of Velcro but in much smaller scale.

2.
Front Plant Sci ; 6: 664, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26379690

RESUMEN

Inorganic phosphate (Pi) depletion is a serious problem for plant growth. Membrane lipid remodeling is a defense mechanism that plants use to survive Pi-depleted conditions. During Pi starvation, phospholipids are degraded to supply Pi for other essential biological processes, whereas galactolipid synthesis in plastids is up-regulated via the transcriptional activation of monogalactosyldiacylglycerol synthase 3 (MGD3). Thus, the produced galactolipids are transferred to extraplastidial membranes to substitute for phospholipids. We found that, Pi starvation induced oil accumulation in the vegetative tissues of various seed plants without activating the transcription of enzymes involved in the later steps of triacylglycerol (TAG) biosynthesis. Moreover, the Arabidopsis starchless phosphoglucomutase mutant, pgm-1, accumulated higher TAG levels than did wild-type plants under Pi-depleted conditions. We generated transgenic plants that expressed a key gene involved in TAG synthesis using the Pi deficiency-responsive MGD3 promoter in wild-type and pgm-1 backgrounds. During Pi starvation, the transgenic plants accumulated higher TAG amounts compared with the non-transgenic plants, suggesting that the Pi deficiency-responsive promoter of galactolipid synthase in plastids may be useful for producing transgenic plants that accumulate more oil under Pi-depleted conditions.

3.
New Phytol ; 203(1): 310-22, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24684726

RESUMEN

Flower glycerolipids are the yet-to-be discovered frontier of the lipidome. Although ample evidence suggests important roles for glycerolipids in flower development, stage-specific lipid profiling in tiny Arabidopsis flowers is challenging. Here, we utilized a transgenic system to synchronize flower development in Arabidopsis. The transgenic plant PAP1::AP1-GR ap1-1 cal-5 showed synchronized flower development upon dexamethasone treatment, which enabled massive harvesting of floral samples of homogenous developmental stages for glycerolipid profiling. Glycerolipid profiling revealed a decrease in concentrations of phospholipids involved in signaling during the early development stages, such as phosphatidic acid and phosphatidylinositol, and a marked increase in concentrations of nonphosphorous galactolipids during the late stage. Moreover, in the midstage, phosphatidylinositol 4,5-bisphosphate concentration was increased transiently, which suggests the stimulation of the phosphoinositide metabolism. Accompanying transcriptomic profiling of relevant glycerolipid metabolic genes revealed simultaneous induction of multiple phosphoinositide biosynthetic genes associated with the increased phosphatidylinositol 4,5-bisphosphate concentration, with a high degree of differential expression patterns for genes encoding other glycerolipid-metabolic genes. The phosphatidic acid phosphatase mutant pah1 pah2 showed flower developmental defect, suggesting a role for phosphatidic acid in flower development. Our concurrent profiling of glycerolipids and relevant metabolic gene expression revealed distinct metabolic pathways stimulated at different stages of flower development in Arabidopsis.


Asunto(s)
Arabidopsis/química , Arabidopsis/genética , Flores/crecimiento & desarrollo , Lípidos/química , Transcriptoma , Flores/química , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas , Proteínas Asociadas a Pancreatitis , Fosfatidilinositoles/química , Fosfolípidos/química , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/genética
4.
Front Plant Sci ; 4: 469, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24312111

RESUMEN

Phosphate (Pi) limitation causes drastic lipid remodeling in plant membranes. Glycolipids substitute for the phospholipids that are degraded, thereby supplying Pi needed for essential biological processes. Two major types of remodeling of membrane lipids occur in higher plants: whereas one involves an increase in the concentration of sulfoquinovosyldiacylglycerol in plastids to compensate for a decreased concentration of phosphatidylglycerol, the other involves digalactosyldiacylglycerol (DGDG) synthesis in plastids and the export of DGDG to extraplastidial membranes to compensate for reduced abundances of phospholipids. Lipid remodeling depends on an adequate supply of monogalactosyldiacylglycerol (MGDG), which is a substrate that supports the elevated rate of DGDG synthesis that is induced by low Pi availability. Regulation of MGDG synthesis has been analyzed most extensively using the model plant Arabidopsis thaliana, although orthologous genes that encode putative MGDG synthases exist in photosynthetic organisms from bacteria to higher plants. We recently hypothesized that two types of MGDG synthase diverged after the appearance of seed plants. This divergence might have both enabled plants to adapt to a wide range of Pi availability in soils and contributed to the diversity of seed plants. In the work presented here, we found that membrane lipid remodeling also takes place in sesame, which is one of the most common traditional crops grown in Asia. We identified two types of MGDG synthase from sesame (encoded by SeMGD1 and SeMGD2) and analyzed their enzymatic properties. Our results show that both genes correspond to the Arabidopsis type-A and -B isoforms of MGDG synthase. Notably, whereas Pi limitation up-regulates only the gene encoding the type-B isoform of Arabidopsis, low Pi availability up-regulates the expression of both SeMGD1 and SeMGD2. We discuss the significance of the different responses to low Pi availability in sesame and Arabidopsis.

5.
Proc Natl Acad Sci U S A ; 106(49): 20978-83, 2009 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-19923426

RESUMEN

Phosphate is an essential nutrient for plant viability. It is well-established that phosphate starvation triggers membrane lipid remodeling, a process that converts significant portion of phospholipids to non-phosphorus-containing galactolipids. This remodeling is mediated by either phospholipase C (PLC) or phospholipase D (PLD) in combination with phosphatidate phosphatase (PAP). Two PLC genes, NPC4 and NPC5, and PLD genes, PLDzeta1 and PLDzeta2, are shown to be involved in the remodeling. However, gene knockout studies show that none of them plays decisive roles in the remodeling. Thus, although this phenomenon is widely observed among plants, the key enzyme(s) responsible for the lipid remodeling in a whole plant body is unknown; therefore, the physiological significance of this conversion process has remained to be elucidated. We herein focused on PAP as a key enzyme for this adaptation, and identified Arabidopsis lipin homologs, AtPAH1 and AtPAH2, that encode the PAPs involved in galactolipid biosynthesis. Double mutant pah1pah2 plants had decreased phosphatidic acid hydrolysis, thus affecting the eukaryotic pathway of galactolipid synthesis. Upon phosphate starvation, pah1pah2 plants were severely impaired in growth and membrane lipid remodeling. These results indicate that PAH1 and PAH2 are the PAP responsible for the eukaryotic pathway of galactolipid synthesis, and the membrane lipid remodeling mediated by these two enzymes is an essential adaptation mechanism to cope with phosphate starvation.


Asunto(s)
Arabidopsis/metabolismo , Metabolismo de los Lípidos , Fosfatos/deficiencia , Transducción de Señal , Arabidopsis/citología , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Lípidos de la Membrana/metabolismo , Modelos Biológicos , Mutación/genética , Fenotipo , Fosfatos/farmacología , Fosfatidato Fosfatasa/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...