Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genes Cells ; 22(1): 59-70, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27935167

RESUMEN

An evolutionarily conserved protein Tel2 regulates a variety of stress signals. In mammals, TEL2 associates with TTI1 and TTI2 to form the Triple T (TTT: TEL2-TTI1-TTI2) complex as well as with all the phosphatidylinositol 3-kinase-like kinases (PIKKs) and the R2TP (Ruvbl1-Ruvbl2-Tah1-Pih1 in budding yeast)/prefoldin-like complex that associates with HSP90. The phosphorylation of TEL2 by casein kinase 2 (CK2) enables direct binding of PIHD1 (mammalian Pih1) to TEL2 and is important for the stability and the functions of PIKKs. However, the regulatory mechanisms of Tel2 in fission yeast Schizosaccharomyces pombe remain largely unknown. Here, we report that S. pombe Tel2 is phosphorylated by CK2 at Ser490 and Thr493. Tel2 forms the TTT complex with Tti1 and Tti2 and also associates with PIKKs, Rvb2, and Hsp90 in vivo; however, the phosphorylation of Tel2 affects neither the stability of the Tel2-associated proteins nor their association with Tel2. Thus, Tel2 stably associates with its binding partners irrespective of its phosphorylation. Furthermore, the Tel2 phosphorylation by CK2 is not required for the various stress responses to which PIKKs are pivotal. Our results suggest that the Tel2-containing protein complexes are conserved among eukaryotes, but the molecular regulation of their formation has been altered during evolution.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Estrés Fisiológico/genética , Proteínas de Unión a Telómeros/metabolismo , Quinasa de la Caseína II/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Fosforilación , Unión Proteica , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Unión a Telómeros/genética
2.
Genes Cells ; 19(7): 541-54, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24774534

RESUMEN

CENP-A is a centromere-specific variant of histone H3 that is required for accurate chromosome segregation. The fission yeast Schizosaccharomyces pombe and mammalian Mis16 and Mis18 form a complex essential for CENP-A recruitment to centromeres. It is unclear, however, how the Mis16-Mis18 complex achieves this function. Here, we identified, by mass spectrometry, novel fission yeast centromere proteins Mis19 and Mis20 that directly interact with Mis16 and Mis18. Like Mis18, Mis19 and Mis20 are localized at the centromeres during interphase, but not in mitosis. Inactivation of Mis19 in a newly isolated temperature-sensitive mutant resulted in CENP-A delocalization and massive chromosome missegregation, whereas Mis20 was dispensable for proper chromosome segregation. Mis19 might be a bridge component for Mis16 and Mis18. We isolated extragenic suppressor mutants for temperature-sensitive mis18 and mis19 mutants and used whole-genome sequencing to determine the mutated sites. We identified two groups of loss-of-function suppressor mutations in non-sense-mediated mRNA decay factors (upf2 and ebs1), and in SWI/SNF chromatin-remodeling components (snf5, snf22 and sol1). Our results suggest that the Mis16-Mis18-Mis19-Mis20 CENP-A-recruiting complex, which is functional in the G1-S phase, may be counteracted by the SWI/SNF chromatin-remodeling complex and non-sense-mediated mRNA decay, which may prevent CENP-A deposition at the centromere.


Asunto(s)
Proteínas Portadoras/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Complejos Multiproteicos/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Centrómero/ultraestructura , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Espectrometría de Masas , Datos de Secuencia Molecular , Mutación , Subunidades de Proteína/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
3.
PLoS One ; 8(10): e78545, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24167631

RESUMEN

Fission yeast, Schizoaccharomyces pombe, is a model for studying cellular quiescence. Shifting to a medium that lacks a nitrogen-source induces proliferative cells to enter long-term G0 quiescence. Klf1 is a Krüppel-like transcription factor with a 7-amino acid Cys2His2-type zinc finger motif. The deletion mutant, ∆klf1, normally divides in vegetative medium, but proliferation is not restored after long-term G0 quiescence. Cell biologic, transcriptomic, and metabolomic analyses revealed a unique phenotype of the ∆klf1 mutant in quiescence. Mutant cells had diminished transcripts related to signaling molecules for switching to differentiation; however, proliferative metabolites for cell-wall assembly and antioxidants had significantly increased. Further, the size of ∆klf1 cells increased markedly during quiescence due to the aberrant accumulation of Calcofluor-positive, chitin-like materials beneath the cell wall. After 4 weeks of quiescence, reversible proliferation ability was lost, but metabolism was maintained. Klf1 thus plays a role in G0 phase longevity by enhancing the differentiation signal and suppressing metabolism for growth. If Klf1 is lost, S. pombe fails to maintain a constant cell size and normal cell morphology during quiescence.


Asunto(s)
Pared Celular/metabolismo , Fase de Descanso del Ciclo Celular/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Pared Celular/genética , Quitina/genética , Quitina/metabolismo , Mutación , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Factores de Transcripción/genética , Dedos de Zinc
4.
Proc Natl Acad Sci U S A ; 107(8): 3540-5, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20133687

RESUMEN

Regulations of proliferation and quiescence in response to nutritional cues are important for medicine and basic biology. The fission yeast Schizosaccharomyces pombe serves as a model, owing to the shift of proliferating cells to the metabolically active quiescence (designate G0 phase hereafter) by responding to low nitrogen source. S. pombe G0 phase cells keep alive for months without growth and division. Nitrogen replenishment reinstates vegetative proliferation phase (designate VEG). Some 40 genes required for G0 maintenance were identified, but many more remain to be identified. We here show, using mutants, that the proteasome is required for maintaining G0 quiescence. Functional outcomes of proteasome in G0 and VEG phases appear to be distinct. Upon proteasome dysfunction, a number of antioxidant proteins and compounds responsive to ROS (reactive oxygen species) are produced. In addition, autophagy-mediated destruction of mitochondria occurs, which suppresses the loss of viability by eliminating ROS-generating mitochondria. These defensive responses are found in G0 but not in VEG, suggesting that the main function of proteasome in G0 phase homeostasis is to minimize ROS. Proteasome and autophagy are thus collaborative to support the lifespan of S. pombe G0 phase.


Asunto(s)
Autofagia/fisiología , Longevidad/fisiología , Mitocondrias/fisiología , Complejo de la Endopetidasa Proteasomal/fisiología , Schizosaccharomyces/crecimiento & desarrollo , Autofagia/genética , Proliferación Celular , Regulación Fúngica de la Expresión Génica , Longevidad/genética , Mitocondrias/genética , Nitrógeno/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Especies Reactivas de Oxígeno/metabolismo , Fase de Descanso del Ciclo Celular/genética , Fase de Descanso del Ciclo Celular/fisiología , Schizosaccharomyces/genética
5.
Genes Cells ; 14(5): 539-54, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19371376

RESUMEN

Calcium/calmodulin-dependent protein kinase (CaMK) is required for diverse cellular functions, and similar kinases exist in fungi. Although mammalian CaMK kinase (CaMKK) activates CaMK and also evolutionarily-conserved AMP-activated protein kinase (AMPK), CaMKK is yet to be established in yeast. We here report that the fission yeast Schizosaccharomyces pombe Ssp1 kinase, which controls G2/M transition and response to stress, is the putative CaMKK. Ssp1 has a CaM binding domain (CBD) and associates with 14-3-3 proteins as mammalian CaMKK does. Temperature-sensitive ssp1 mutants isolated are defective in the tolerance to limited glucose, and this tolerance requires the conserved stretch present between the kinase domain and CBD. Sds23, multi-copy suppressor for mutants defective in type 1 phosphatase and APC/cyclosome, also suppresses the ssp1 phenotype, and is required for the tolerance to limited glucose. We demonstrate that Sds23 binds to type 2A protein phosphatases (PP2A) and PP2A-related phosphatase Ppe1, and that Sds23 inhibits Ppe1 phosphatase activity. Ssp1 and Ppe1 thus seem to antagonize in utilizing limited glucose. We also show that Ppk9 and Ssp2 are the catalytic subunits of AMPK and AMPK-related kinases, respectively, which bind to common beta-(Amk2) and gamma-(Cbs2) subunits.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/efectos de los fármacos , Glucosa/farmacología , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Secuencia de Aminoácidos , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , División Celular/efectos de los fármacos , Fase G2/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/genética , Datos de Secuencia Molecular , Ácido Ocadaico/farmacología , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Unión Proteica , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/química , Proteína Fosfatasa 2/metabolismo , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Supresión Genética , Temperatura
6.
J Cell Biol ; 180(6): 1115-31, 2008 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-18362178

RESUMEN

The condensin complex has a fundamental role in chromosome dynamics. In this study, we report that accumulation of Schizosaccharomyces pombe condensin at mitotic kinetochores and ribosomal DNAs (rDNAs) occurs in multiple steps and is necessary for normal segregation of the sister kinetochores and rDNAs. Nuclear entry of condensin at the onset of mitosis requires Cut15/importin alpha and Cdc2 phosphorylation. Ark1/aurora and Cut17/Bir1/survivin are needed to dock the condensin at both the kinetochores and rDNAs. Furthermore, proteins that are necessary to form the chromatin architecture of the kinetochores (Mis6, Cnp1, and Mis13) and rDNAs (Nuc1 and Acr1) are required for condensin to accumulate specifically at these sites. Acr1 (accumulation of condensin at rDNA 1) is an rDNA upstream sequence binding protein that physically interacts with Rrn5, Rrn11, Rrn7, and Spp27 and is required for the proper accumulation of Nuc1 at rDNAs. The mechanism of condensin accumulation at the kinetochores may be conserved, as human condensin II fails to accumulate at kinetochores in hMis6 RNA interference-treated cells.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ADN Ribosómico/fisiología , Proteínas de Unión al ADN/metabolismo , Cinetocoros/metabolismo , Mitosis/fisiología , Complejos Multiproteicos/metabolismo , Schizosaccharomyces/metabolismo , Huso Acromático/metabolismo , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica/fisiología , Secuencia Conservada/fisiología , Proteínas de Unión al ADN/genética , Evolución Molecular , Regulación Fúngica de la Expresión Génica/fisiología , Cinetocoros/ultraestructura , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático/genética , Huso Acromático/ultraestructura
7.
Cell Cycle ; 7(6): 765-76, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18239448

RESUMEN

Cohesin is a multiprotein complex essential for sister-chromatid cohesion. It plays a pivotal role in proper chromosome segregation and DNA damage repair. The mitotic behavior of cohesin is controlled through its phosphorylation, which possibly induces the dissociation of cohesin from chromosomes and enhances its susceptibility to separase. Here, we report using mass spectrometry and anti-phospho antibodies that the central domain of Rad21, the separase-target subunit of Schizosaccharomyces pombe cohesin, is regulated by various kinase-induced phosphorylation at nine residues, indicating the multiple roles for S. pombe cohesin. In vegetative and non-dividing G(0) cells, Rad21 is phosphorylated by unknown S/TP-consensus kinases, in mitotic and non-mitotic cells by polo/Plo1 and CDK, and in DNA-damaged cells by Rad3/ATR. While mitotic phosphorylation is implicated in the dissociation of Rad21 and its cleavage by separase in anaphase, the Rad3/ATR-dependent damage-induced phosphorylation occurs intensively at the time of repair completion, and only in post-replicative cells. This damage-induced Rad21 phosphorylation is involved in the recovery process of cells from checkpoint arrest, and needed for the removal of cohesin by separase after the completion of damage repair. These complex phospho-regulations of Rad21 indicate the functional significance of cohesin in cell adaptation to a variety of cellular conditions.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Reparación del ADN/fisiología , Endopeptidasas/metabolismo , Mitosis/fisiología , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiología , Inmunoprecipitación de Cromatina , Inmunoquímica , Espectrometría de Masas , Fosforilación , Schizosaccharomyces/metabolismo , Separasa
8.
Genes Cells ; 12(12): 1357-70, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18076573

RESUMEN

Nutrients are essential for cell growth and division. Screening of Schizosaccharomyces pombe temperature-sensitive strains led to the isolation of a nutrient-insensitive mutant, tor2-287. This mutant produces a nitrogen starvation-induced arrest phenotype in rich media, fails to recover from the arrest, and is hypersensitive to rapamycin. The L2048S substitution mutation in the catalytic domain in close proximity to the adenine base of ATP is unique as it is the sole known genetic cause of rapamycin hypersensitivity. Localization of Tor2 was speckled in the vegetative cytoplasm, and both speckled and membranous in the arrested cell cytoplasm. Using mass spectroscopic analysis, we identified six subunits (Tco89, Bit61, Toc1, Tel2, Tti1 and Cka1) that, in addition to the six previously identified subunits (Tor1, Tor2, Mip1/Raptor, Ste20/Rictor, Sin1/Avo1 and Wat1/Lst8), comprise the TOR complexes (TORCs). All of the subunits so far examined are multiply phosphorylated. Tel2 bound to Tti1 interacts with various phosphatidyl inositol kinase (PIK)-related kinases including Tra1, Tra2 and Rad3, as well as Tor1 and Tor2. Schizosaccharomyces pombe TORCs should thus be functionally redundant and might be broadly regulated through different subunits that are either common or specific to the two TORCs, or even common to various PIK-related kinases. Functional redundancy of the TORCs may explain the rapamycin hypersensitivity of tor2-287.


Asunto(s)
Fosfatidilinositol 3-Quinasas/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/enzimología , Sirolimus/farmacología , Regulación Fúngica de la Expresión Génica , Complejos Multiproteicos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética
9.
Dev Cell ; 12(1): 17-30, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17199038

RESUMEN

The centromere is the chromosomal site that joins to microtubules during mitosis for proper segregation. Determining the location of a centromere-specific histone H3 called CENP-A at the centromere is vital for understanding centromere structure and function. Here, we report the identification of three human proteins essential for centromere/kinetochore structure and function, hMis18alpha, hMis18beta, and M18BP1, the complex of which is accumulated specifically at the telophase-G1 centromere. We provide evidence that such centromeric localization of hMis18 is essential for the subsequent recruitment of de novo-synthesized CENP-A. If any of the three is knocked down by RNAi, centromere recruitment of newly synthesized CENP-A is rapidly abolished, followed by defects such as misaligned chromosomes, anaphase missegregation, and interphase micronuclei. Tricostatin A, an inhibitor to histone deacetylase, suppresses the loss of CENP-A recruitment to centromeres in hMis18alpha RNAi cells. Telophase centromere chromatin may be primed or licensed by the hMis18 complex and RbAp46/48 to recruit CENP-A through regulating the acetylation status in the centromere.


Asunto(s)
Autoantígenos/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular , Centrómero/efectos de los fármacos , Proteína A Centromérica , Proteínas Cromosómicas no Histona/química , Segregación Cromosómica/efectos de los fármacos , Secuencia de Consenso , Genoma Humano/efectos de los fármacos , Células HeLa , Humanos , Ácidos Hidroxámicos/farmacología , Metafase/efectos de los fármacos , Datos de Secuencia Molecular , Mutación/genética , Filogenia , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myb/metabolismo , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Telofase/efectos de los fármacos , Vertebrados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...