Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
EJNMMI Res ; 13(1): 100, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985555

RESUMEN

BACKGROUND: CD103 is an integrin specifically expressed on the surface of cancer-reactive T cells. The number of CD103+ T cells significantly increases during successful immunotherapy and might therefore be an attractive biomarker for noninvasive PET imaging of immunotherapy response. Since the long half-life of antibodies preclude repeat imaging of CD103+ T cell dynamics early in therapy, we therefore here explored PET imaging with CD103 Fab fragments radiolabeled with a longer (89Zr) and shorter-lived radionuclide (68Ga). METHODS: Antihuman CD103 Fab fragment Fab01A was radiolabeled with 89Zr or 68Ga, generating [89Zr]Zr-hCD103.Fab01A and [68Ga]Ga-hCD103.Fab01A, respectively. In vivo evaluation of these tracers was performed in male nude mice (BALB/cOlaHsd-Foxn1nu) with established CD103-expressing CHO (CHO.CD103) or CHO-wildtype (CHO.K1) xenografts, followed by serial PET imaging and ex vivo bio-distribution. RESULTS: [89Zr]Zr-hCD103.Fab01A showed high tracer uptake in CD103+ xenografts as early as 3 h post-injection. However, the background signal remained high in the 3- and 6-h scans. The background was relatively low at 24 h after injection with sufficient tumor uptake. [68Ga]Ga-hCD103.Fab01Ashowed acceptable uptake and signal-to-noise ratio in CD103+ xenografts after 3 h, which decreased at subsequent time points. CONCLUSION: [89Zr]Zr-hCD103.Fab01A demonstrated a relatively low background and high xenograft uptake in scans as early as 6 h post-injection and could be explored for repeat imaging during immunotherapy in clinical trials. 18F or 64Cu could be explored as alternative to 68Ga in optimizing half-life and radiation burden of the tracer.

2.
Cancers (Basel) ; 14(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35454831

RESUMEN

Identification of human cancer-reactive CD8+ T cells is crucial for the stratification of patients for immunotherapy and determination of immune-therapeutic effects. To date, these T cells have been identified mainly based on cell surface expression of programmed cell death protein 1 (PD-1) or co-expression of CD103 and CD39. A small subset of CD103- CD39+ CD8+ T cells is also present in tumors, but little is known about these T cells. Here, we report that CD103- CD39+ CD8+ T cells from mismatch repair-deficient endometrial tumors are activated and characterized predominantly by expression of TNFRSF9. In vitro, transforming growth factor-beta (TGF-ß) drives the disappearance of this subset, likely through the conversion of CD103- CD39+ cells to a CD103+ phenotype. On the transcriptomic level, T cell activation and induction of CD39 was associated with a number of tissue residence and TGF-ß responsive transcription factors. Altogether, our data suggest CD39+ CD103- CD8+ tumor-infiltrating T cells are recently activated and likely rapidly differentiate towards tissue residence upon exposure to TGF-ß in the tumor micro-environment, explaining their relative paucity in human tumors.

3.
J Immunother Cancer ; 10(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36600560

RESUMEN

PURPOSE: CD103, an integrin specifically expressed on the surface of cancer-reactive T cells, is significantly increased during successful immunotherapy across human malignancies. In this study, we describe the generation and zirconium-89 (89Zr) radiolabeling of monoclonal antibody (mAb) clones that specifically recognize human CD103 for non-invasive immune positron-emission tomography (PET) imaging of T cell infiltration as potential biomarker for effective anticancer immune responses. EXPERIMENTAL DESIGN: First, to determine the feasibility of anti-CD103 immuno-PET to visualize CD103-positive cells at physiologically and clinically relevant target densities, we developed an 89Zr-anti-murine CD103 PET tracer. Healthy, non-tumor bearing C57BL/6 mice underwent serial PET imaging after intravenous injection, followed by ex vivo biodistribution. Tracer specificity and macroscopic tissue distribution were studied using autoradiography combined with CD103 immunohistochemistry. Next, we generated and screened six unique mAbs that specifically target human CD103 positive cells. Optimal candidates were selected for 89Zr-anti-human CD103 PET development. Nude mice (BALB/cOlaHsd-Foxn1nu) with established CD103 expressing Chinese hamster ovary (CHO) or CHO wild-type xenografts were injected with 89Zr-anti-human CD103 mAbs and underwent serial PET imaging, followed by ex vivo biodistribution. RESULTS: 89Zr-anti-murine CD103 PET imaging identified CD103-positive tissues at clinically relevant target densities. For human anti-human CD103 PET development two clones were selected based on strong binding to the CD103+ CD8+ T cell subpopulation in ovarian cancer tumor digests, non-overlapping binding epitopes and differential CD103 blocking properties. In vivo, both 89Zr-anti-human CD103 tracers showed high target-to-background ratios, high target site selectivity and a high sensitivity in human CD103 positive xenografts. CONCLUSION: CD103 immuno-PET tracers visualize CD103 T cells at relevant densities and are suitable for future non-invasive assessment of cancer reactive T cell infiltration.


Asunto(s)
Neoplasias , Tomografía de Emisión de Positrones , Humanos , Ratones , Animales , Cricetinae , Distribución Tisular , Ratones Desnudos , Células CHO , Ratones Endogámicos C57BL , Cricetulus , Tomografía de Emisión de Positrones/métodos , Anticuerpos Monoclonales/metabolismo
4.
Oncoimmunology ; 10(1): 1936391, 2021 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-34178428

RESUMEN

Activation of STimulator of INterferon Genes (STING) is important for induction of anti-tumor immunity. A dysfunctional STING pathway is observed in multiple cancer types and associates with poor prognosis and inferior response to immunotherapy. However, the association between STING and prognosis in virally induced cancers such as HPV-positive cervical cancer remains unknown. Here, we investigated the prognostic value of STING protein levels in cervical cancer using tumor tissue microarrays of two patient groups, primarily treated with surgery (n = 251) or radio(chemo)therapy (n = 255). We also studied CD103, an integrin that marks tumor-reactive cytotoxic T cells that reside in tumor epithelium and that is reported to associate with improved prognosis. Notably, we found that a high level of STING protein was an independent prognostic factor for improved survival in both the surgery and radio(chemo)therapy group. High infiltration of CD103+ T cells was associated with improved survival in the radio(chemo)therapy group. The combination of STING levels and CD103+ T cell infiltration is strongly associated with improved prognosis. We conclude that combining the prognostic values of STING and CD103 may improve the risk stratification of cervical cancer patients, independent from established clinical prognostic parameters.


Asunto(s)
Linfocitos T CD8-positivos , Proteínas de la Membrana/metabolismo , Neoplasias del Cuello Uterino , Antígenos CD , Femenino , Humanos , Cadenas alfa de Integrinas , Integrinas , Pronóstico , Neoplasias del Cuello Uterino/terapia
5.
Oncoimmunology ; 9(1): 1760705, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32923120

RESUMEN

Epithelial Ovarian cancer (EOC) is the most lethal gynecological malignancy and has limited curative therapeutic options. Immunotherapy for EOC is promising, but clinical efficacy remains restricted to a small percentage of patients. Several lines of evidence suggest that the low response rate might be improved by combining immunotherapy with carboplatin and paclitaxel, the standard-of-care chemotherapy for EOC. Here, we assessed the immune contexture of EOC tumors, draining lymph nodes, and peripheral blood mononuclear cells during carboplatin/paclitaxel chemotherapy. We observed that the immune contexture of EOC patients is defined by the tissue of origin, independent of exposure to chemotherapy. Summarized, draining lymph nodes were characterized by a quiescent microenvironment composed of mostly non-proliferating naïve CD4 + T cells. Circulating T cells shared phenotypic features of both lymph nodes and tumor-infiltrating immune cells. Immunologically 'hot' ovarian tumors were characterized by ICOS, GITR, and PD-1 expression on CD4 + and CD8 + cells, independent of chemotherapy. The presence of PD-1 + cells in tumors prior to, but not after, chemotherapy was associated with disease-specific survival (DSS). Accordingly, we observed high MHC-I expression in tumors prior to chemotherapy, but minimal MHC-I expression in tumors after neoadjuvant chemotherapy, even though there were no differences in the number of tumor-infiltrating lymphocytes (TIL) in both groups. We therefore speculate that the TIL influx into the chemotherapy tumor microenvironment may be a consequence of the general inflammatory nature of chemotherapy-experienced tumors. Strategies to upregulate MHC-I during or after neoadjuvant chemotherapy may thus improve treatment outcome in these patients.


Asunto(s)
Terapia Neoadyuvante , Neoplasias Ováricas , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Femenino , Humanos , Linfocitos Infiltrantes de Tumor , Neoplasias Ováricas/tratamiento farmacológico , Estudios Retrospectivos , Microambiente Tumoral
6.
J Nucl Med ; 61(12): 1839-1844, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32358092

RESUMEN

18F-BMS-986192, an adnectin-based human programmed cell death ligand 1 (PD-L1) tracer, was developed to noninvasively determine whole-body PD-L1 expression by PET. We evaluated the usability of 18F-BMS-986192 PET to detect different PD-L1 expression levels and therapy-induced changes in PD-L1 expression in tumors. Methods: In vitro binding assays with 18F-BMS-986192 were performed on human tumor cell lines with different total cellular and membrane PD-L1 protein expression levels. Subsequently, PET imaging was performed on immunodeficient mice xenografted with these cell lines. The mice were treated with interferon γ (IFNγ) intraperitoneally for 3 d or with the mitogen-activated protein kinase kinase inhibitor selumetinib by oral gavage for 24 h. Afterward, 18F-BMS-986192 was administered intravenously, followed by a 60-min dynamic PET scan. Tracer uptake was expressed as percentage injected dose per gram of tissue. Tissues were collected to evaluate ex vivo tracer biodistribution and to perform flow cytometric, Western blot, and immunohistochemical tumor analyses. Results:18F-BMS-986192 uptake reflected PD-L1 membrane levels in tumor cell lines, and tumor tracer uptake in mice was associated with PD-L1 expression measured immunohistochemically. In vitro IFNγ treatment increased PD-L1 expression in the tumor cell lines and caused up to a 12-fold increase in tracer binding. In vivo, IFNγ affected neither PD-L1 tumor expression measured immunohistochemically nor 18F-BMS-986192 tumor uptake. In vitro, selumetinib downregulated cellular and membrane levels of PD-L1 in tumor cells by 50% as measured by Western blotting and flow cytometry. In mice, selumetinib lowered cellular, but not membrane, PD-L1 levels of tumors, and consequently, no treatment-induced change in 18F-BMS-986192 tumor uptake was observed. Conclusion:18F-BMS-986192 PET imaging allows detection of membrane-expressed PD-L1 as soon as 60 min after tracer injection. The tracer can discriminate a range of tumor cell PD-L1 membrane expression levels.


Asunto(s)
Antígeno B7-H1/metabolismo , Regulación de la Expresión Génica , Imagen Molecular/métodos , Fragmentos de Péptidos , Tomografía de Emisión de Positrones/métodos , Animales , Línea Celular Tumoral , Radioisótopos de Flúor/química , Radioisótopos de Flúor/metabolismo , Humanos , Ratones , Trazadores Radiactivos , Distribución Tisular
7.
Cancer Lett ; 461: 102-111, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31319139

RESUMEN

Advanced stage ovarian clear cell carcinoma (OCCC) is poorly responsive to platinum-based chemotherapy and has an unfavorable prognosis. Previous studies revealed heterogeneous mutations in PI3K/AKT/mTOR and MAPK pathway nodules converging in mTORC1/2 activation. Here, we aimed to identify an effective low-dose combination of PI3K/AKT/mTOR pathway and MAPK pathway inhibitors simultaneously targeting key kinases in OCCC to preclude single-inhibitor initiated pathway rewiring and limit toxicity. Small molecule inhibitors of mTORC1/2, PI3K and MEK1/2 were combined at monotherapy IC20 doses in a panel of genetically diverse OCCC cell lines (n = 7) to determine an optimal low-dose combination. The IC20 dose triple combination reduced kinase activity in PI3K/AKT/mTOR and MAPK pathways, prevented single-inhibitor induced feedback mechanisms and inhibited short and long-term proliferation in all seven cell lines. Finally, this low-dose triple drug combination treatment significantly reduced tumor growth in two genetically characterized OCCC patient-derived xenograft (PDX) models without resulting in weight loss in these mice. The effectiveness and tolerability of this combined therapy in PDX models warrants clinical exploration of this treatment strategy for OCCC and might be applicable to other cancer types with a similar genetic background.


Asunto(s)
Adenocarcinoma de Células Claras/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/química , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Adenocarcinoma de Células Claras/metabolismo , Adenocarcinoma de Células Claras/patología , Animales , Apoptosis , Bencimidazoles/administración & dosificación , Benzoxazoles/administración & dosificación , Biomarcadores de Tumor , Proliferación Celular , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Femenino , Humanos , Indazoles/administración & dosificación , Ratones , Ratones Desnudos , Morfolinas/administración & dosificación , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Fosforilación , Inhibidores de Proteínas Quinasas , Pirimidinas/administración & dosificación , Sulfonamidas/administración & dosificación , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
J Pathol ; 249(1): 52-64, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30972766

RESUMEN

Immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) have improved the survival of patients with non-small cell lung cancer (NSCLC). Still, many patients do not respond to these inhibitors. PD-L1 (CD274) expression, one of the factors that influences the efficacy of immune checkpoint inhibitors, is dynamic. Here, we studied the regulation of PD-L1 expression in NSCLC without targetable genetic alterations in EGFR, ALK, BRAF, ROS1, MET, ERBB2 and RET. Analysis of RNA sequencing data from these NSCLCs revealed that inferred IFNγ, EGFR and MAPK signaling correlated with CD274 gene expression in lung adenocarcinoma. In a representative lung adenocarcinoma cell line panel, stimulation with EGF or IFNγ increased CD274 mRNA and PD-L1 protein and membrane levels, which were further enhanced by combining EGF and IFNγ. Similarly, tumor cell PD-L1 membrane levels increased after coculture with activated peripheral blood mononuclear cells. Inhibition of the MAPK pathway, using EGFR inhibitors cetuximab and erlotinib or the MEK 1 and 2 inhibitor selumetinib, prevented EGF- and IFNγ-induced CD274 mRNA and PD-L1 protein and membrane upregulation, but had no effect on IFNγ-induced MHC-I upregulation. Interestingly, although IFNγ increases transcriptional activity of CD274, MAPK signaling also increased stabilization of CD274 mRNA. In conclusion, MAPK pathway activity plays a key role in EGF- and IFNγ-induced PD-L1 expression in lung adenocarcinoma without targetable genetic alterations and may present a target to improve the efficacy of immunotherapy. © 2019 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Adenocarcinoma del Pulmón/enzimología , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/enzimología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Células A549 , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Antineoplásicos/farmacología , Antígeno B7-H1/genética , Técnicas de Cocultivo , Factor de Crecimiento Epidérmico/farmacología , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Factor de Crecimiento de Hepatocito/farmacología , Humanos , Interferón gamma/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/genética , Inhibidores de Proteínas Quinasas/farmacología , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal
9.
Cancer Immunol Res ; 7(5): 784-796, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30872264

RESUMEN

The chemokine CXCL13 mediates recruitment of B cells to tumors and is essential for the formation of tertiary lymphoid structures (TLSs). TLSs are thought to support antitumor immunity and are associated with improved prognosis. However, it remains unknown whether TLSs are formed in response to the general inflammatory character of the tumor microenvironment, or rather, are induced by (neo)antigen-specific adaptive immunity. We here report on the finding that the TGFß-dependent CD103+CD8+ tumor-infiltrating T-cell (TIL) subpopulation expressed and produced CXCL13. Accordingly, CD8+ T cells from peripheral blood activated in the presence of TGFß upregulated CD103 and secreted CXCL13. Conversely, inhibition of TGFß receptor signaling abrogated CXCL13 production. CXCL13+CD103+CD8+ TILs correlated with B-cell recruitment, TLSs, and neoantigen burden in six cohorts of human tumors. Altogether, our findings indicated that TGFß plays a noncanonical role in coordinating immune responses against human tumors and suggest a potential role for CXCL13+CD103+CD8+ TILs in mediating B-cell recruitment and TLS formation in human tumors.


Asunto(s)
Antígenos CD/inmunología , Linfocitos B/inmunología , Linfocitos T CD8-positivos/inmunología , Quimiocina CXCL13/inmunología , Cadenas alfa de Integrinas/inmunología , Neoplasias Ováricas/inmunología , Receptores de Factores de Crecimiento Transformadores beta/inmunología , Antígenos de Neoplasias/inmunología , Femenino , Humanos
10.
MAbs ; 9(8): 1370-1378, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28873009

RESUMEN

Treatment of human epidermal growth factor receptor 2 (HER2)-driven breast cancer with tyrosine kinase inhibitor lapatinib can induce a compensatory HER3 increase, which may attenuate antitumor efficacy. Therefore, we explored in vivo HER3 tumor status assessment after lapatinib treatment with zirconium-89 (89Zr)-labeled anti-HER3 antibody mAb3481 positron emission tomography (PET). Lapatinib effects on HER3 cell surface expression and mAb3481 internalization were evaluated in human breast (BT474, SKBR3) and gastric (N87) cancer cell lines using flow cytometry. Next, in vivo effects of daily lapatinib treatment on89Zr-mAb3481 BT474 and N87 xenograft tumor uptake were studied. PET-scans (BT474 only) were made after daily lapatinib treatment for 9 days, starting 3 days prior to 89Zr-mAb3481 administration. Subsequently, ex vivo 89Zr-mAb3481 organ distribution analysis was performed and HER3 tumor levels were measured with Western blot and immunohistochemistry. In vitro, lapatinib increased membranous HER3 in BT474, SKBR3 and N87 cells, and consequently mAb3481 internalization 1.7-fold (BT474), 1.4-fold (SKBR3) and 1.4-fold (N87). 89Zr-mAb3481 BT474 tumor uptake was remarkably high at SUVmean 5.6±0.6 (51.8±7.7%ID/g) using a 10 µg 89Zr-mAb3481 protein dose in vehicle-treated mice. However, compared to vehicle, lapatinib did not affect 89Zr-mAb3481 ex vivo uptake in BT474 and N87 tumors, while HER3 tumor expression remained unchanged. In conclusion, lapatinib increased in vitro HER3 tumor cell expression, but not when these cells were xenografted. 89Zr-mAb3481 PET accurately reflected HER3 tumor status. 89Zr-mAb3481 PET showed high, HER3-specific tumor uptake, and such an approach might sensitively assess HER3 tumor heterogeneity and treatment response in patients.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Tomografía de Emisión de Positrones/métodos , Quinazolinas/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Anticuerpos Monoclonales Humanizados/inmunología , Antineoplásicos/administración & dosificación , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/inmunología , Femenino , Humanos , Lapatinib , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Radioisótopos , Receptor ErbB-3/inmunología , Carga Tumoral/efectos de los fármacos , Carga Tumoral/inmunología , Circonio
11.
Oncotarget ; 8(28): 45432-45446, 2017 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-28467975

RESUMEN

Imgatuzumab is a novel glycoengineered anti-epidermal growth factor receptor (EGFR) monoclonal antibody optimized to induce both antibody-dependent cellular cytotoxicity (ADCC) and EGFR signal transduction inhibition. We investigated anti-EGFR monoclonal antibodies imgatuzumab and cetuximab-induced internalization and membranous turnover of EGFR, and whether this affected imgatuzumab-mediated ADCC responses and growth inhibition of non-small cell lung cancer (NSCLC) cells.In a panel of wild-type EGFR expressing human NSCLC cell lines, membranous and total EGFR levels were downregulated more effectively by imgatuzumab when compared with cetuximab. Imgatuzumab plus cetuximab enhanced EGFR internalization and reduced membranous turnover of EGFR, resulting in an even stronger downregulation of EGFR. Immunofluorescent analysis showed that combined treatment increased clustering of receptor-antibody complexes and directed internalized EGFR to lysosomes. The antibody combination potently inhibited intracellular signaling and epidermal growth factor (EGF)-dependent cell proliferation. More importantly, robust EGFR downregulation after 72 hours with the antibody combination did not impair ADCC responses.In conclusion, imgatuzumab plus cetuximab leads to a strong downregulation of EGFR and superior cell growth inhibition in vitro without affecting antibody-induced ADCC responses. These findings support further clinical exploration of the antibody combination in EGFR wild-type NSCLC.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Antineoplásicos Inmunológicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Cetuximab/farmacología , Receptores ErbB/antagonistas & inhibidores , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Transducción de Señal/efectos de los fármacos , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Membrana Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expresión Génica , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Lisosomas/metabolismo , Unión Proteica , Transporte de Proteínas , Proteolisis
12.
Eur J Nucl Med Mol Imaging ; 44(8): 1328-1336, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28315949

RESUMEN

PURPOSE: c-MET and its ligand hepatocyte growth factor are often dysregulated in human cancers. Dynamic changes in c-MET expression occur and might predict drug efficacy or emergence of resistance. Noninvasive visualization of c-MET dynamics could therefore potentially guide c-MET-directed therapies. We investigated the feasibility of 89Zr-labelled one-armed c-MET antibody onartuzumab PET for detecting relevant changes in c-MET levels induced by c-MET-mediated epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib resistance or heat shock protein-90 (HSP90) inhibitor NVP-AUY-922 treatment in human non-small-cell lung cancer (NSCLC) xenografts. METHODS: In vitro membrane c-MET levels were determined by flow cytometry. HCC827ErlRes, an erlotinib-resistant clone with c-MET upregulation, was generated from the exon-19 EGFR-mutant human NSCLC cell line HCC827. Mice bearing HCC827 and HCC827ErlRes tumours in opposite flanks underwent 89Zr-onartuzumab PET scans. The HCC827-xenografted mice underwent 89Zr-onartuzumab PET scans before treatment and while receiving biweekly intraperitoneal injections of 100 mg/kg NVP-AUY-922 or vehicle. Ex vivo, tumour c-MET immunohistochemistry was correlated with the imaging results. RESULTS: In vitro, membrane c-MET was upregulated in HCC827ErlRes tumours by 213 ± 44% in relation to the level in HCC827 tumours, while c-MET was downregulated by 69 ± 9% in HCC827 tumours following treatment with NVP-AUY-922. In vivo, 89Zr-onartuzumab uptake was 26% higher (P < 0.05) in erlotinib-resistant HCC827ErlRes than in HCC827 xenografts, while HCC827 tumour uptake was 33% lower (P < 0.001) following NVP-AUY-922 treatment. CONCLUSION: The results show that 89Zr-onartuzumab PET effectively discriminates relevant changes in c-MET levels and could potentially be used clinically to monitor c-MET status.


Asunto(s)
Anticuerpos Monoclonales , Tomografía de Emisión de Positrones , Proteínas Proto-Oncogénicas c-met/metabolismo , Radioisótopos , Circonio , Animales , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Transformación Celular Neoplásica , Resistencia a Antineoplásicos/efectos de los fármacos , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Estudios de Factibilidad , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Humanos , Isoxazoles/farmacología , Isoxazoles/uso terapéutico , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones , Resorcinoles/farmacología , Resorcinoles/uso terapéutico , Regulación hacia Arriba/efectos de los fármacos
13.
Oncotarget ; 7(42): 68111-68121, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27602494

RESUMEN

Preclinical positron emission tomography (PET) imaging revealed a mismatch between in vivo epidermal growth factor receptor (EGFR) expression and EGFR antibody tracer tumor uptake. Shed EGFR ectodomain (sEGFR), which is present in cancer patient sera, can potentially bind tracer and therefore influence tracer kinetics. To optimize EGFR-PET, we examined the influence of sEGFR levels on tracer kinetics and tumor uptake of EGFR monoclonal antibody 89Zr-imgatuzumab in varying xenograft models. Human cancer cell lines A431 (EGFR overexpressing, epidermoid), A549 and H441 (both EGFR medium expressing, non-small cell lung cancer) were xenografted in mice. Xenografted mice received 10, 25 or 160 µg 89Zr-imgatuzumab, co-injected with equal doses 111In-IgG control. MicroPET scans were made 24, 72 and 144 h post injection, followed by biodistribution analysis. sEGFR levels in liver and plasma samples were determined by ELISA. 89Zr-imgatuzumab uptake in A431 tumors was highest (29.8 ± 5.4 %ID/g) in the 160 µg dose group. Contrary, highest uptake in A549 and H441 tumors was found at the lowest (10 µg) 89Zr-imgatuzumab dose. High 89Zr-imgatuzumab liver accumulation was found in A431 xenografted mice, which decreased with antibody dose increments. 89Zr-imgatuzumab liver uptake in A549 and H441 xenografted mice was low at all doses. sEGFR levels in liver and plasma of A431 bearing mice were up to 1000-fold higher than levels found in A549, H441 and non-tumor xenografted mice. 89Zr-imgatuzumab effectively visualizes EGFR-expressing tumors. High sEGFR levels can redirect 89Zr-imgatuzumab to the liver, in which case tumor visualization can be improved by increasing tracer antibody dose.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacocinética , Bevacizumab/farmacocinética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Glicoproteínas/farmacocinética , Neoplasias Pulmonares/metabolismo , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Masculino , Ratones Desnudos , Radioisótopos/farmacocinética , Distribución Tisular , Trasplante Heterólogo , Circonio/farmacocinética
14.
Pharmacol Ther ; 143(1): 1-11, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24513440

RESUMEN

The human epidermal growth factor receptor (HER) family members are targeted by a growing numbers of small molecules and monoclonal antibodies. Resistance against the epidermal growth factor receptor (EGFR) and HER2-targeting agents is a clinically relevant problem forcing research on optimizing targeting of the HER family. In view of its overexpression in tumors, and compensatory role in HER signaling, HER3 has gained much interest as a potential additional target within the HER family. It is the only member of the HER family lacking intrinsic tyrosine kinase activity and therefore its role in cancer has long been underestimated. Drugs that block HER3 or interfere with HER3 dimer signaling, including fully human anti-HER3 antibodies, bispecific antibodies and tyrosine kinase inhibitors (TKIs), are currently becoming available. Several compounds have already entered clinical trial. In the meantime potential biomarkers are tested such as tumor analysis of HER3 expression, functional assays for downstream effector molecules and molecular imaging techniques. This review describes the biology and relevance of HER3 in cancer, agents targeting HER3 and potential biomarkers for effect of HER3-targeting.


Asunto(s)
Neoplasias/tratamiento farmacológico , Receptor ErbB-3/fisiología , Animales , Anticuerpos Biespecíficos/uso terapéutico , Biomarcadores/análisis , Resistencia a Antineoplásicos , Humanos , Neoplasias/patología , Quinazolinas/uso terapéutico , Receptor ErbB-3/análisis , Receptor ErbB-3/antagonistas & inhibidores , Transducción de Señal/fisiología
15.
Respir Res ; 14: 97, 2013 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-24088173

RESUMEN

BACKGROUND: Cigarette smoking is the major risk factor for COPD, leading to chronic airway inflammation. We hypothesized that cigarette smoke induces structural and functional changes of airway epithelial mitochondria, with important implications for lung inflammation and COPD pathogenesis. METHODS: We studied changes in mitochondrial morphology and in expression of markers for mitochondrial capacity, damage/biogenesis and fission/fusion in the human bronchial epithelial cell line BEAS-2B upon 6-months from ex-smoking COPD GOLD stage IV patients to age-matched smoking and never-smoking controls. RESULTS: We observed that long-term CSE exposure induces robust changes in mitochondrial structure, including fragmentation, branching and quantity of cristae. The majority of these changes were persistent upon CSE depletion. Furthermore, long-term CSE exposure significantly increased the expression of specific fission/fusion markers (Fis1, Mfn1, Mfn2, Drp1 and Opa1), oxidative phosphorylation (OXPHOS) proteins (Complex II, III and V), and oxidative stress (Mn-SOD) markers. These changes were accompanied by increased levels of the pro-inflammatory mediators IL-6, IL-8, and IL-1ß. Importantly, COPD primary bronchial epithelial cells (PBECs) displayed similar changes in mitochondrial morphology as observed in long-term CSE-exposure BEAS-2B cells. Moreover, expression of specific OXPHOS proteins was higher in PBECs from COPD patients than control smokers, as was the expression of mitochondrial stress marker PINK1. CONCLUSION: The observed mitochondrial changes in COPD epithelium are potentially the consequence of long-term exposure to cigarette smoke, leading to impaired mitochondrial function and may play a role in the pathogenesis of COPD.


Asunto(s)
Bronquios/patología , Células Epiteliales/patología , Mitocondrias/fisiología , Mitocondrias/ultraestructura , Dinámicas Mitocondriales/fisiología , Recambio Mitocondrial/fisiología , Fumar/efectos adversos , Adulto , Anciano , Bronquios/metabolismo , Estudios de Casos y Controles , Línea Celular , Células Cultivadas , Citocinas/metabolismo , Dinaminas , Células Epiteliales/metabolismo , Femenino , GTP Fosfohidrolasas/metabolismo , Humanos , Técnicas In Vitro , Masculino , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Persona de Mediana Edad , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Quinasas/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Factores de Riesgo , Superóxido Dismutasa/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA