Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Psychiatry ; 14: 1279688, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38348362

RESUMEN

Major depressive disorder (MDD) is the most common psychiatric disease worldwide with a huge socio-economic impact. Pharmacotherapy represents the most common option among the first-line treatment choice; however, only about one third of patients respond to the first trial and about 30% are classified as treatment-resistant depression (TRD). TRD is associated with specific clinical features and genetic/gene expression signatures. To date, single sets of markers have shown limited power in response prediction. Here we describe the methodology of the PROMPT project that aims at the development of a precision medicine algorithm that would help early detection of non-responder patients, who might be more prone to later develop TRD. To address this, the project will be organized in 2 phases. Phase 1 will involve 300 patients with MDD already recruited, comprising 150 TRD and 150 responders, considered as extremes phenotypes of response. A deep clinical stratification will be performed for all patients; moreover, a genomic, transcriptomic and miRNomic profiling will be conducted. The data generated will be exploited to develop an innovative algorithm integrating clinical, omics and sex-related data, in order to predict treatment response and TRD development. In phase 2, a new naturalistic cohort of 300 MDD patients will be recruited to assess, under real-world conditions, the capability of the algorithm to correctly predict the treatment outcomes. Moreover, in this phase we will investigate shared decision making (SDM) in the context of pharmacogenetic testing and evaluate various needs and perspectives of different stakeholders toward the use of predictive tools for MDD treatment to foster active participation and patients' empowerment. This project represents a proof-of-concept study. The obtained results will provide information about the feasibility and usefulness of the proposed approach, with the perspective of designing future clinical trials in which algorithms could be tested as a predictive tool to drive decision making by clinicians, enabling a better prevention and management of MDD resistance.

2.
Front Psychiatry ; 13: 777394, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35546921

RESUMEN

Background: Cognitive deficits occur in most patients with affective disorders. The role of neurotrophic factors (e.g., BDNF) as modulators of brain plasticity affecting neurocognitive abilities has been emphasized. Neurotrophin concentrations may change under the influence of various interventions, including physical activity. Selected studies have shown that cognitive function may also be affected by exercise. Aim: The aim of the study was to determine whether physical activity changes the concentration of neurotrophins and their receptors in patients with an episode of depression. It was also examined how one session of aerobic exercise affects cognitive control. Methods: The study included 41 participants. The subjects were asked to exercise on a cycloergometer for 40 min with individually selected exercise loads (70% VO2max). Before and shortly after the exercise blood samples were acquired to perform blood assays (proBDNF, BDNF, TrkB, NGFR). The participants also performed a Stroop test twice-before the exercise and 10 min after its cessation. Results: The single bout of physical exercise did not cause any significant changes in the concentration of neurotrophic factors. The SCWT results: both the mean reading time (29.3 s vs. 47.8 s) and the color naming time (36.7 s vs. 50.7 s) increased. The patients made more mistakes after physical exercise, both in part A (0.2 vs. 1.5) and B (0.6 vs. 1.5). The so-called interference effect decreased-the difference between naming and reading times was smaller after exercise (6.2 s vs. 2.4 s). No significant correlations were found between the concentrations of the studied neurotrophic factors and the Stroop test results. Conclusions: The results did not confirm changes in neurotrophin concentration under the influence of a single session of physical activity. The shortening of the interference time after exercise may be caused by practice effects. A significant limitation of the study is the use of the Stroop test twice in short intervals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA