Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124491, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38823243

RESUMEN

This study aims to investigate the impact of the π â†’ π* excitation localised in one monomer on the equilibrium geometry and oscillations of the AA dimer. Several low-frequency vibrations appear in pairs in the LIF spectrum because oscillations involving intermolecular hydrogen bonds are coupled, generating approximately symmetric and antisymmetric combinations (especially the COOH rocking modes, LIF: 295 and 301 cm-1). Furthermore, quantitative evaluation based on the TDDFT(B3LYP) results indicates that a dozen among 90 intramolecular oscillations are strongly coupled. In contrast, most vibrations are decoupled or weakly coupled, since they involve remote parts of the monomers. This makes several single vibrations active in the LIF spectrum (including the bending mode of the NH···O intramolecular hydrogen bond associated the strongest vibronic band 442 cm-1), while the other in each pair remains inactive. The reason for decoupling of oscillations and symmetry breaking is that the π â†’ π* electronic excitation is entirely localised within one of the monomers, which makes them no longer equivalent in terms of geometry and dynamics. Additionally, the excitation of one monomer induces strengthening and shortening by 6 pm of only one intermolecular hydrogen bond linking the carboxylic groups of both molecules. This causes the 1.7° in-plane distortion of the dimer and lowering of its symmetry to Cs group (from C2h for the S0 state). The distortion induces the activity of two low-frequency in-plane intermolecular vibrations, i.e. the geared oscillation (LIF: 58 cm-1) and the shearing motion (99 cm-1) of the monomers.

2.
Molecules ; 29(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38398575

RESUMEN

The photophysical and sensory properties of the donor-acceptor pyrazoloquinoline derivative (PQPc) were investigated using absorption, steady-state, and time-resolved fluorescence measurements. The compound synthesized from commercial, readily available substrates exhibited absorptions in the UV-Vis range, with a maximum of the longwave band around 390 nm. The maximum fluorescence was around 460-480 nm, depending on the solvent. The quantum yield was between 12.87% (for n-hexane) and 0.75% (for acetonitrile) and decreased with increasing solvent polarity. The PET mechanism was implicated as the cause of fluorescence quenching. Divalent ions such as Zn2+, Pb2+, Cd2+, Ca2+, Mg2+, Co2+, Ni2+, and Cu2+ were introduced to study the fluorescent response of PQPc. A 13-times increase in fluorescence quantum yield was observed after the addition of Zn2+ ions. Detailed research was carried out for the PQPc-Zn2+ system in order to check the possibility of analytical applications of PQPc as a fluorescent sensor. A detection limit of Zn2+ was set at the value level 1.93 × 10-7 M. PQPc-Zn2+ complexes had a stoichiometry of 1:1 with a binding constant of 859 M-1. Biological studies showed that the sensor was localized in cells near the membrane and cytoplasm and may be used to detect zinc ions in eukaryotic cells.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 296: 122643, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37001263

RESUMEN

The manuscript describes the effect of molecular structure on the photophysical and photovoltaic properties of the pyrazoline-based donor-branched-π-system-acceptor compounds decorated with two end groups: phenyl or thiophene. Although the absorption to the first singlet excited state is strongly allowed, the emission quantum yield is low in all studied solvents. This behaviour was explained by the existence of two non-radiative deactivation channels: the back electron transfer process, especially operated in polar solvents, and internal conversion realized as the rotation of flexible rotors (cyano, keto phenyl or thiophene). The feasibility of the photoinduced electron transfer process was corroborated by electrochemical, spectroelectrochemical measurements as well as DFT calculations. DFT calculations also support the existence of multiple conformations in the ground state, which differ from one another in terms of charge distribution and the values of ground state dipole moment. Finally, the mechanism of the singlet excited state deactivation of the studied compounds was determined by ultrafast pump-probe measurements. Our studies revealed that charge/electron transfer process may undergo over carbonyl bridge, included in branched π-system. Moreover, the thiophene decorated pyrazoline is characterized by a better photovoltaic power conversion efficiency, while the phenyl-ended pyrazoline can be applied as a viscosity sensor.

4.
Beilstein J Nanotechnol ; 13: 1531-1540, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605607

RESUMEN

Phenol and 2,6-dibromo-4-methylphenol (DBMP) were removed from aqueous solutions by ozonolysis and photocatalysis. The properties and structural features of the catalysts and the organic compounds are discussed, as well as their influence on the degradation reaction rates. The degradation efficiency in photocatalytic processes was higher for DBMP (98%) than for phenol (approximately 50%). This proves the high efficiency of magnetite in the photocatalytic degradation of halogenated aromatic pollutants. The particularly high degradation efficiency regarding halogen-containing DBMP molecules and the yield of bromide ions indicate that DBMP degradation follows a mixed reduction-oxidation mechanism. DBMP molecules interact with the magnetite surface, enabling them to react with the available electrons, and, as a result, bromide ions can be released. The results confirm that magnetite is an effective photocatalyst in the degradation of halogenated aromatic pollutants.

5.
J Phys Chem A ; 122(30): 6243-6255, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-29965767

RESUMEN

The S0 → S1(π → π*) excitation in o-aminobenzoic acid causes strengthening of the N-H···O intramolecular hydrogen bond. The interplay of the hydrogen bond shortening, the hydrogen atom dislocation along the hydrogen bond, and the skeletal relaxation is investigated. These effects often cause the appearance of dual fluorescence from the π-conjugated internally H-bonded molecules, which is traditionally interpreted as the evidence of the excited-state intramolecular proton transfer process: ESPIT. Hence, their quantitative modeling is an important but demanding task for computational photochemistry. Extensive calculations using CC2 method (the perturbative approximation to CCSD coupled-cluster) and TDDFT(B3LYP) were performed with the series of (aug)-cc-pVXZ(X = D,T,Q) basis sets. CC2 predicts remarkable shortening of the O···H distance by 0.273 Å accompanied by the skeleton relaxation that involves considerable distortions of valence angles of the amino group (up to 7.3°) and within the benzene ring (up to 5°). Additionally, moderate changes (<0.046 Å) of the bond alternation in the π-electronic system and the hydrogen atom dislocation along the hydrogen bond (0.043 Å) are predicted. The CC2 method yields 90% of the magnitude of the experimentally based geometry changes, estimated in the earlier studies via Franck-Condon fit to the LIF spectra, while the TDDFT results approach only 65% of the experimental values.

6.
J Phys Chem A ; 117(48): 12770-82, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24219819

RESUMEN

The harmonic approximation fails for inversion of the NH2 group in the ground state of aromatic amines as this vibration is characterized by a symmetric double-well potential with relatively small energy barrier. In such cases, the standard harmonic vibrational analysis is inapplicable: the inversion frequency calculated for the bottom of the potential well is strongly overestimated, while it attains imaginary values for the planar conformation of the molecule. The model calculations are discussed taking explicitly into account the presence of the double-well potential. The study is initially focused on reproduction of the deuteration-induced shifts of the 0-0 absorption band for anthranilic acid. The (incorrect) harmonic frequency of the NH2 inversion is replaced by a better one, obtained from numerical calculations employing a simple, quartic-quadratic model for the double-well potential, which is parametrized using just the harmonic frequency of the inversion and the height of the energy barrier. This operation brings theoretical results to qualitative agreement with experiment. A still better match is achieved with a modified version of the model that accounts for mixing of the NH2 inversion mode with other normal modes while retaining the initial simplicity of one-dimensional approach. The corrected results show surprisingly good accuracy, with deviations of the calculated shifts from the experimental values reduced to less than 5 cm(-1). In order to test the performance of the model for systems with higher energy barrier for the NH2 inversion, we have measured the LIF excitation spectra of three different amminobenzonitriles. Partial assignment of the 0-0 bands has been achieved based on their relative intensities for samples with different isotopic exchange ratios. Calculated shifts are in excellent agreement with experimental values for the identified bands. Theoretical predictions are used to complete the assignment of the 0-0 bands in the spectra of the studied amminobenzonitriles.

7.
J Fluoresc ; 21(1): 375-83, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20890644

RESUMEN

A novel fluorescent dye bis-(pyridin-2-yl-methyl)-(1,3,4-triphenyl-1H-pyrazolo[3,4-b]quinolin-6-ylmethyl)-amine (P1) has been synthesized and investigated by means of steady state and time-resolved fluorescence techniques. This compound acts as sensor for fluorescence detection of small inorganic cations (lithium, sodium, barium, magnesium, calcium, and zinc) in highly polar solvents such as acetonitrile. The mechanism which allows application of this compound as sensor is an electron transfer from the electron-donative part of molecule (amine) to the acceptor part (pyrazoloquinoline derivative), which is retarded upon complexation of the electro-donative part by inorganic cations. The binding constants are strongly dependent on the charge density of the analyzed cations. The 2/1 complexes of P1 with Zn(++) and Mg(++) cations posses large binding constants. Moreover, in the presence of these cations a significant bathochromic shift of fluorescence is observed. The most probable explanation of such behaviour is the formation of intramolecular excimer. This is partially supported by the quantum chemical calculations.

8.
J Chem Phys ; 130(5): 054307, 2009 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-19206973

RESUMEN

Geometry and vibrational modes of the anthranilic acid molecule in the S(0) and S(1) states were computed using ab initio methods: Hartree-Fock (HF) and configuration interaction of singly excited configurations (CIS) as well as the density functional theory with time-dependent perturbation (TD-DFT). The intensity distribution in the laser-induced fluorescence excitation spectra was modeled in two ways: using displacement parameters for independent modes and using multidimensional Franck-Condon integrals. The change in the molecular geometry upon excitation was calculated from the band intensities within the above two models. Displacement parameters of eight in-plane modes active in the excitation spectrum were optimized to reproduce the experimental intensities of about 40 most intensive and well-separated vibrational bands, while displacement parameters of other in-plane modes were kept frozen at the values resulting from the quantum chemical calculations. The intramolecular hydrogen bond is significantly stronger in the S(1) state than in the ground state. Additionally, bond lengths and angles in the aromatic ring, within the substituents and between the ring and the substituents undergo significant changes and they induce the presence of strong fundamentals in the excitation spectrum.

9.
J Phys Chem A ; 109(25): 5553-9, 2005 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-16833886

RESUMEN

Electronic absorption spectra of C3Cl, C3Cl+, C3Cl-, C4Cl, and C4Cl+ have been recorded in 6 K neon matrices following mass selection. Ab initio calculations were performed (CCSD(T) and CASSCF) to identify the ground and accessible excited states of each molecule. The estimated excitation energies and transition moments aid the assignment. The absorptions observed for C3Cl are the 5(2)A' <-- X(2)A' and 3(2)A'' <-- X(2)A' transitions of the bent isomer and the (2)A1 <-- X(2)B2 transition of the cyclic form in the UV (336.1 nm), visible (428.7 nm), and near-IR (1047 nm) regions, respectively. The band systems for bent C3Cl- (435.2 nm) and linear C3Cl+ (413.2 nm) are both in the visible region and correspond to 2(1)A'' <-- X(1)A' and (1)pi <-- X(1)sigma+ type transitions. The C4Cl and C4Cl+ chains are linear, and the band origins of the 2(2)pi <-- X(2)pi and 2(3)pi <-- X(3)pi electronic transitions are at 427.0 and 405.7 nm. The spectral assignments are supported by analysis of the vibrational structure associated with each electronic transition.

10.
Phys Chem Chem Phys ; 7(10): 2138-41, 2005 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-19791405

RESUMEN

The 2Bg-X2Au transition of a nonlinear carbon chain trans-C6H4+, and trans-C6D4+, has been observed in the gas phase. The spectra were detected in the 580 nm region by direct absorption with a cavity ringdown technique through a supersonic planar discharge. Though the rotational structure is not resolved, the band profiles were analyzed using a "total spectral fitting" procedure using ground-state constants calculated by the CASSCF and CASPT2 methods. The molecular constants in the upper state could thus be determined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...