Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(2): 363-366, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38194569

RESUMEN

Quantum optical coherence tomography (Q-OCT) presents many advantages over its classical counterpart, optical coherence tomography (OCT), provides an increased axial resolution, and is immune to even orders of dispersion. The core of Q-OCT is the quantum interference of negatively correlated entangled photon pairs which, in the Fourier domain, are observed by means of a joint spectrum measurement. In this work, we explore the use of a spectral approach in a novel configuration where classical light pulses are employed instead of entangled photons. The intensity of these light pulses is reduced to a single photon level. We report theoretical analysis along with its experimental validation to show that although such a classical light is much easier to launch into an experimental system, it offers limited benefits compared to Q-OCT based on the entangled light. We analyze the differences in the characteristics of the joint spectrum obtained with entangled photons and with classical optical pulses and point out to the differences' source: the lack of the advantage-bringing term in the signal.

2.
Opt Express ; 31(13): 20629-20640, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37381182

RESUMEN

We consider a microscopy setting where quantum light is used for illumination. Spontaneous parametric down conversion (SPDC) is used as a source of a heralded single photon, which is quantum light prepared in a Fock state. We present analytical formulas for the spatial mode tracking along with the heralded and non-heralded mode widths. The obtained analytical results are supported by numerical calculations and the following discussion taking into account realistic setup parameters such as finite-size optics and finite-size single-photon detectors. This allows us to observe that the diffraction limit can be approached with simultaneous alleviation of the photon loss leading to increased signal-to-noise ratio - a factor limiting practical applications of quantum light. Additionally, it is shown that the spatial resolution can be manipulated by carefully preparing the amplitude and phase of the spatial mode profile of the single photon at the input to the microscope objective. Here, the spatial entanglement of the biphoton wavefunction or adaptive optics can be applied for spatial mode shaping. Analytical dependencies between the incident and focused spatial mode profiles parameters are provided.

3.
Sci Rep ; 13(1): 6596, 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37087517

RESUMEN

Quantum-mimic Optical Coherence Tomography (Qm-OCT) images are cluttered with artefacts - parasitic peaks which emerge as a by-product of the algorithm used in this method. However, the shape and behaviour of an artefact are uniquely related to Group Velocity Dispersion (GVD) of the layer this artefact corresponds to and consequently, the GVD values can be inferred by carefully analysing them. Since for multi-layered objects the number of artefacts is too high to enable layer-specific analysis, we employ a solution based on Machine Learning. We train a neural network with Qm-OCT data as an input and dispersion profiles, i.e. depth distribution of GVD within an A-scan, as an output. By accounting for noise during training, we process experimental data and estimate the GVD values of BK7 and sapphire as well as provide a qualitative GVD value distribution in a grape and cucumber. Compared to other GVD-retrieving methods, our solution does not require user input, automatically provides dispersion values for all the visualised layers and is scalable. We analyse the factors affecting the accuracy of determining GVD: noise in the experimental data as well as general physical limitations of the detection of GVD-induced changes, and suggest possible solutions.

4.
Opt Express ; 30(25): 45624-45634, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36522965

RESUMEN

Artefacts in quantum-mimic optical coherence tomography are considered detrimental because they scramble the images even for the simplest objects. They are a side effect of autocorrelation, which is used in the quantum entanglement mimicking algorithm behind this method. Interestingly, the autocorrelation imprints certain characteristics onto an artefact - it makes its shape and characteristics depend on the amount of dispersion exhibited by the layer that artefact corresponds to. In our method, a neural network learns the unique relationship between the artefacts' shape and GVD, and consequently, it is able to provide a good qualitative representation of object's dispersion profile for never-seen-before data: computer-generated single dispersive layers and experimental pieces of glass. We show that the autocorrelation peaks - additional peaks in the A-scan appearing due to the interference of light reflected from the object - affect the GVD profiles. Through relevant calculations, simulations and experimental testing, the mechanism leading to the observed GVD changes is identified and explained. Finally, the network performance is tested in the presence of noise in the data and with the experimental data representing single layers of quartz, sapphire and BK7.

5.
Sci Rep ; 11(1): 11403, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059774

RESUMEN

Quantum Optical Coherence Tomography (Q-OCT) uses quantum properties of light to provide several advantages over its classical counterpart, OCT: it achieves a twice better axial resolution with the same spectral bandwidth and it is immune to even orders of dispersion. Since these features are very sought-after in OCT imaging, many hardware and software techniques have been created to mimic the quantum behaviour of light and achieve these features using traditional OCT systems. The most recent, purely algorithmic scheme-an improved version of Intensity Correlation Spectral Domain OCT named ICA-SD-OCT-showed even-order dispersion cancellation and reduction of artefacts. The true capabilities of this method were unfortunately severely undermined, both in terms of its relation to Q-OCT and its main performance parameters. In this work, we provide experimental demonstrations as well as numerical and analytical arguments to show that ICA-SD-OCT is a true classical equivalent of Q-OCT, more specifically its Fourier domain version, and therefore it enables a true two-fold axial resolution improvement. We believe that clarification of all the misconceptions about this very promising algorithm will highlight the great value of this method for OCT and consequently lead to its practical applications for resolution- and quality-enhanced OCT imaging.

6.
Opt Express ; 29(2): 564-570, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33726289

RESUMEN

A simple, room-temperature, cavity- and vacuum-free interface for a photon-matter interaction is implemented. In the experiment, a heralded single photon generated by the process of spontaneous parametric down-conversion is absorbed by an ensemble of nitrogen-vacancy color centers. The broad absorption spectrum associated with the phonon sideband solves the mismatch problem of a narrow absorption bandwidth in a typical atomic medium and broadband spectrum of quantum light. The heralded single photon source is tunable in the spectral range 452 - 575 nm, which overlaps well with the absorption spectrum of nitrogen-vacancy centers.

7.
Sci Rep ; 10(1): 20810, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33257780

RESUMEN

We theoretically investigate the problem of finding optimal characteristics of photon pairs, produced in the spontaneous parametric down-conversion (SPDC) process, for fiber-based quantum communication protocols. By using the accessible setup parameters, the pump pulse duration and the extended phase-matching function width, we minimize the temporal width of SPDC photons within the general scenario. This allows one to perform more effectively the temporal filtering procedure, which aims at reducing the noise acquired by the measurement devices. Moreover, we compare the obtained results with the achievable parameter values for SPDC sources based on [Formula: see text]-Barium Borate crystal. We also investigate the influence of non-zero detection timing jitter. Finally, we apply our optimization strategy to a simple quantum key distribution scheme to show that the full optimization of an SPDC source can potentially extend the maximal security distance by several tens of kilometres, which is around 30% more as compared to previous approaches.

8.
Opt Express ; 28(20): 29576-29589, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33114855

RESUMEN

Quantum optical coherence tomography (Q-OCT) is the non-classical counterpart of optical coherence tomography (OCT), a high-resolution 3D imaging technique based on white-light interferometry. Because Q-OCT uses a source of frequency-entangled photon pairs, not only is the axial resolution not affected by dispersion mismatch in the interferometer but is also inherently improved by a factor of two. Unfortunately, practical applications of Q-OCT are hindered by image-scrambling artefacts and slow acquisition times. Here, we present a theoretical analysis of a novel approach that is free of these problems: Fourier domain Q-OCT (Fd-Q-OCT). Based on a photon pair coincidence detection as in the standard Q-OCT configuration, it also discerns each photon pair by their wavelength. We show that all the information about the internal structures of the object is encoded in the joint spectrum and can be easily retrieved through Fourier transformation. No depth scanning is required, making our technique potentially faster than standard Q-OCT. Finally, we show that the data available in the joint spectrum enables artefact removal and discuss prospective algorithms for doing so.

9.
Opt Lett ; 45(13): 3373-3376, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630848

RESUMEN

This work is a proposition of an experimental platform to observe quantum fictitious anticentrifugal force. We present an analytical and numerical treatment of a rectangular toroidal dielectric waveguide. Solving the Helmholtz equation, we obtain analytical solutions for transverse spatial modes and estimate their number as a function of system characteristics. On top of that, the analysis of the structure is extended onto a real material platform, a thin-film lithium niobate on insulator rib waveguide. The framework presented here can be applied directly to analyze the phenomenon of quantum anticentrifugal force.

10.
Opt Lett ; 45(13): 3443-3446, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630867

RESUMEN

Intensity levels allowed by safety standards (ICNIRP or ANSI) limit the amount of light that can be used in a clinical setting to image highly scattering or absorptive tissues with optical coherence tomography (OCT). To achieve high-sensitivity imaging at low intensity levels, we adapt a detection scheme-which is used in quantum optics for providing information about spectral correlations of photons-into a standard spectral domain OCT system. This detection scheme is based on the concept of dispersive Fourier transformation, where a fiber introduces a wavelength-dependent time delay measured by a single-pixel detector, usually a high-speed photoreceiver. Here, we use a fast superconducting single-photon detector SSPD as a single-pixel detector and obtain images of a glass stack and a slice of onion at the intensity levels of the order of 10 pW. We also provide a formula for a depth-dependent sensitivity falloff in such a detection scheme, which can be treated as a temporal equivalent of diffraction-grating-based spectrometers.


Asunto(s)
Teoría Cuántica , Tomografía de Coherencia Óptica/métodos , Análisis de Fourier , Vidrio , Cebollas/citología , Fotones
11.
Appl Opt ; 59(13): 3886-3891, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32400657

RESUMEN

A white light cavity (WLC) scheme is proposed to achieve broadband response in the terahertz (THz) region by enhanced nonlinear dispersion in a magnetized graphene system. In the weak probe field limit, the cavity linewidth is narrowed due to electromagnetically induced transparency, and then it becomes nearly as broad as the empty-cavity linewidth under the condition of Autler-Towns splitting. It is interesting to find that the cavity linewidth can be further broadened by enhanced nonlinear dispersion. The simulation result shows that the response range of the cavity is from 6.273 THz to 6.308 THz under the given condition, which is nearly 11 times larger than the empty-cavity linewidth. Furthermore, the improvement in cavity transmission and the response of WLC at different frequencies are investigated.

12.
Sci Rep ; 10(1): 5847, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32246055

RESUMEN

We consider the counterfactual protocol proposed in Phys. Rev. Lett., 103, 230501 (2009) within a device independent framework and show how its security can easily be compromised. Capitalising on the fact that the protocol is based on the use of a single photon entanglement phenomenon, we propose an equivalent protocol. It can be made secure within such a pessimistic framework against a supra-quantum Eve limited only by the no-signalling principle. The equivalence the protocol demonstrates the possibility of device independent framework for counterfactual quantum cryptography.

13.
Sci Rep ; 9(1): 3111, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816284

RESUMEN

Quantum communication protocols can be significantly enhanced by careful preparation of the wavepackets of the utilized photons. Following the theoretical proposal published recently by our group, we experimentally demonstrate the effect of remote temporal wavepacket narrowing of a heralded single photon produced via spontaneous parametric down-conversion. This is done by utilizing a time-resolved measurement on the heralding photon which is frequency-entangled with the heralded photon. We then investigate optimal photon pair source characteristics to minimize heralded wavepacket width.

14.
Opt Lett ; 43(24): 6085-6088, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30548011

RESUMEN

We demonstrate niobium nitride based superconducting single-photon detectors sensitive in the spectral range 452-2300 nm. The system performance was tested in a real-life experiment with correlated photons generated by means of spontaneous parametric downconversion, where one photon was in the visible range and the other was in the infrared range. We measured a signal to noise ratio as high as 4×104 in our detection setting. A photon detection efficiency as high as 64% at 1550 nm and 15% at 2300 nm was observed.

15.
Opt Express ; 24(18): 20947-55, 2016 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-27607697

RESUMEN

Correlated photon pairs produced by a spontaneous parametric down conversion (SPDC) process can be used for secure quantum communication over long distances including free space transmission over a link through turbulent atmosphere. We experimentally investigate the possibility to utilize the intrinsic strong correlation between the pump and output photon spatial modes to mitigate the negative targeting effects of atmospheric beam wander. Our approach is based on a demonstration observing the deflection of the beam on a spatially resolved array of single photon avalanche diodes (SPAD-array).

16.
Opt Lett ; 39(6): 1481-4, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24690818

RESUMEN

Spectrally correlated photon pairs can be used to improve the performance of long-range fiber-based quantum communication protocols. We present a source based on spontaneous parametric downconversion, which allows one to control spectral correlations within the entangled photon pair without spectral filtering by changing the pump-pulse duration or the characteristics of the coupled spatial modes. The spectral correlations and polarization entanglement are characterized. We find that the generated photon pairs can feature both positive spectral correlations, decorrelation, or negative correlations at the same time as polarization entanglement with a high fidelity of 0.97 (no background subtraction) with the expected Bell state.

17.
Sci Rep ; 4: 4685, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24770360

RESUMEN

The double-slit experiment strikingly demonstrates the wave-particle duality of quantum objects. In this famous experiment, particles pass one-by-one through a pair of slits and are detected on a distant screen. A distinct wave-like pattern emerges after many discrete particle impacts as if each particle is passing through both slits and interfering with itself. Here we present a temporally- and spatially-resolved measurement of the double-slit interference pattern using single photons. We send single photons through a birefringent double-slit apparatus and use a linear array of single-photon detectors to observe the developing interference pattern. The analysis of the buildup allows us to compare quantum mechanics and the corpuscular model, which aims to explain the mystery of single-particle interference. Finally, we send one photon from an entangled pair through our double-slit setup and show the dependence of the resulting interference pattern on the twin photon's measured state. Our results provide new insight into the dynamics of the buildup process in the double-slit experiment, and can be used as a valuable resource in quantum information applications.

18.
Sci Rep ; 3: 2314, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23896982

RESUMEN

Creating miniature chip scale implementations of optical quantum information protocols is a dream for many in the quantum optics community. This is largely because of the promise of stability and scalability. Here we present a monolithically integratable chip architecture upon which is built a photonic device primitive called a Bragg reflection waveguide (BRW). Implemented in gallium arsenide, we show that, via the process of spontaneous parametric down conversion, the BRW is capable of directly producing polarization entangled photons without additional path difference compensation, spectral filtering or post-selection. After splitting the twin-photons immediately after they emerge from the chip, we perform a variety of correlation tests on the photon pairs and show non-classical behaviour in their polarization. Combined with the BRW's versatile architecture our results signify the BRW design as a serious contender on which to build large scale implementations of optical quantum processing devices.

19.
Opt Lett ; 38(5): 697-9, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23455269

RESUMEN

Frequency correlation (or decorrelation) of photon pairs is of great importance in long-range quantum communications and photonic quantum computing. We experimentally characterize a spontaneous parametric downconversion source, based on a ß-barium borate crystal cut for type-II phase matching at 1550 nm, which has the capability to emit photons with positive or no spectral correlations. Our system employs a carefully designed detection method exploiting two InGaAs detectors.

20.
Phys Rev Lett ; 99(12): 123601, 2007 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-17930501

RESUMEN

We propose and demonstrate a method for measuring the spectral density matrix of a single photon pulse. The method is based on registering Hong-Ou-Mandel interference between a photon to be measured and a pair of attenuated and suitably delayed laser pulses described by a known spectral amplitude. The density matrix is retrieved from a two-dimensional interferogram of coincidence counts. The method has been implemented for a type-I down-conversion source, pumped by ultrashort laser pulses. The experimental results agree well with a theoretical model which takes into account the temporal as well as spatial effects in the source.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...