Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 11(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37626601

RESUMEN

Childhood asthma is a chronic inflammatory airway disorder that can drive tissue remodeling. Neutrophils are amongst the most prominent inflammatory cells contributing to disease manifestations and may exert a potent role in the progression of inflammation to fibrosis. However, their role in asthma exacerbation is still understudied. Here, we investigate the association between neutrophil extracellular traps (NETs) and lung fibroblasts in childhood asthma pathophysiology using serum samples from pediatric patients during asthma exacerbation. Cell-based assays and NETs/human fetal lung fibroblast co-cultures were deployed. Increased levels of NETs and interleukin (IL)-17A were detected in the sera of children during asthma exacerbation. The in vitro stimulation of control neutrophils using the sera from pediatric patients during asthma exacerbation resulted in IL-17A-enriched NET formation. The subsequent co-incubation of lung fibroblasts with in vitro-generated IL-17A-enriched NETs led fibroblasts to acquire a pre-fibrotic phenotype, as assessed via enhanced CCN2 expression, migratory/healing capacity, and collagen release. These data uncover the important pathogenic role of the NET/IL-17A axis in asthma exacerbation, linking lung inflammation to fibroblast dysfunction and fibrosis.

2.
Molecules ; 29(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38202599

RESUMEN

Novel full-sandwich (η5-Cp)-Ru-paraphenylene complexes with the general formula [(η5-Cp)nRu(η6-L)](PF6)n where n = 1-3 and L = biphenyl, p-terphenyl and p-quaterphenyl, were synthesized and characterized by means of spectroscopic and analytical techniques. The structures of the complexes [(η5-Cp)Ru(η6-biphenyl)](PF6) (1), [(η5-Cp)Ru(η6-terphenyl)](PF6) (3) and [(η5-Cp)2Ru(η6-terphenyl)](PF6)2 (4) was determined by X-ray single crystal methods. The interaction of the complexes [(η5-Cp)Ru(η6-quaterphenyl)]Cl, (6)Cl, and [(η5-Cp)2Ru(η6-quaterphenyl)]Cl2, (7)Cl2, with the DNA duplex d(5'-CGCGAATTCGCG-3')2 was studied using NMR techniques. The results showed that both complexes interacted non-specifically with both the minor and major grooves of the helix. Specifically, (6)Cl exhibited partial binding through intercalation between the T7 and T8 bases of the sequence without disrupting the C-G and A-T hydrogen bonds. Fluorometric determination of the complexes' binding constants revealed a significant influence of the number of connected phenyl rings in the paraphenylene ligand (L) on the binding affinity of their complexes with the d(5'-CGCGAATTCGCG-3')2. The complexes (6)Cl and (7)Cl2 were found to be highly cytotoxic against the A549 lung cancer cell line, with complex (6) being more effective than (7) (IC50 for (6)Cl: 17.45 ± 2.1 µΜ, IC50 for (7)Cl2: 65.83 ± 1.8 µΜ) and with a selectivity index (SI) (SI for (6)Cl: 1.1 and SI for (7)Cl2: 4.8).


Asunto(s)
Antineoplásicos , Compuestos de Bifenilo , Neoplasias Pulmonares , Rutenio , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Rutenio/farmacología , Células A549 , Antineoplásicos/farmacología , Compuestos Orgánicos
3.
Cancers (Basel) ; 14(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36291831

RESUMEN

Transcription Factors (TFs) are the main regulators of gene expression, controlling among others cell homeostasis, identity, and fate. TFs may either act synergistically or antagonistically on nearby regulatory elements and their interplay may activate or repress gene expression. The family of NF-κB TFs is among the most important TFs in the regulation of inflammation, immunity, and stress-like responses, while they also control cell growth and survival, and are involved in inflammatory diseases and cancer. The family of E2F TFs are major regulators of cell cycle progression in most cell types. Several studies have suggested the interplay between these two TFs in the regulation of numerous genes controlling several biological processes. In the present study, we compared the genomic binding landscape of NF-κB RelA/p65 subunit and E2F1 TFs, based on high throughput ChIP-seq and RNA-seq data in different cell types. We confirmed that RelA/p65 has a binding profile with a high preference for distal enhancers bearing active chromatin marks which is distinct to that of E2F1, which mostly generates promoter-specific binding. Moreover, the RelA/p65 subunit and E2F1 cistromes have limited overlap and tend to bind chromatin that is in an active state even prior to immunogenic stimulation. Finally, we found that a fraction of the E2F1 cistrome is recruited by NF-κΒ near pro-inflammatory genes following LPS stimulation in immune cell types.

4.
Cancers (Basel) ; 13(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34503110

RESUMEN

BACKGROUND: The development of non-small cell lung cancer (NSCLC) involves the progressive accumulation of genetic and epigenetic changes. These include somatic oncogenic KRAS and EGFR mutations and inactivating TP53 tumour suppressor mutations, leading to activation of canonical NF-κB. However, the mechanism(s) by which canonical NF-κB contributes to NSCLC is still under investigation. METHODS: Human NSCLC cells were used to knock-down RelA/p65 (RelA/p65KD) and investigate its impact on cell growth, and its mechanism of action by employing RNA-seq analysis, qPCR, immunoblotting, immunohistochemistry, immunofluorescence and functional assays. RESULTS: RelA/p65KD reduced the proliferation and tumour growth of human NSCLC cells grown in vivo as xenografts in immune-compromised mice. RNA-seq analysis identified canonical NF-κB targets mediating its tumour promoting function. RelA/p65KD resulted in the upregulation of the metastasis suppressor CD82/KAI1/TSPAN27 and downregulation of the proto-oncogene ROS1, and LGR6 involved in Wnt/ß-catenin signalling. Immunohistochemical and bioinformatics analysis of human NSCLC samples showed that CD82 loss correlated with malignancy. RelA/p65KD suppressed cell migration and epithelial-to-mesenchymal cell transition (EMT), mediated, in part, by CD82/KAI1, through integrin-mediated signalling involving the mitogenic ERK, Akt1 and Rac1 proteins. CONCLUSIONS: Canonical NF-κB signalling promotes NSCLC, in part, by downregulating the metastasis suppressor CD82/KAI1 which inhibits cell migration, EMT and tumour growth.

5.
Cells ; 10(5)2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922806

RESUMEN

VEGFR2 is the main receptor and mediator of the vasculogenic and angiogenic activity of VEGF. Activated VEGFR2 internalizes through clathrin-mediated endocytosis and macropinocytosis. As dynamin is a key regulator of the clathrin pathway, chemical inhibitors of dynamin are commonly used to assess the role of the clathrin route in receptor signaling. However, drugs may also exert off-target effects. Here, we compare the effects of three dynamin inhibitors, dynasore, dyngo 4a and dynole, on VEGFR2 internalization and signaling. Although these drugs consistently inhibit clathrin-mediated endocytosis of both transferrin (a typical cargo of this route) and VEGFR2, surprisingly, they exert contradictory effects in receptor signaling. Thus, while dynasore has no effect on phosphorylation of VEGFR2, the other two drugs are strong inhibitors. Furthermore, although dyngo does not interfere with phosphorylation of Akt, dynasore and dynole have a strong inhibitory effect. These inconsistent effects suggest that the above dynamin blockers, besides inhibiting dynamin-dependent endocytosis of VEGFR2, exert additional inhibitory effects on signaling that are independent of endocytosis; i.e., they are due to off-target effects. Using a recently developed protocol, we comparatively validate the specificity of two endocytic inhibitors, dynasore and EIPA. Our findings highlight the importance of assessing whether the effect of an endocytic drug on signaling is specifically due to its interference with endocytosis or due to off-targets.


Asunto(s)
Acrilamidas/farmacología , Dinaminas/antagonistas & inhibidores , Endocitosis/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hidrazonas/farmacología , Indoles/farmacología , Naftoles/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Clatrina/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Factor A de Crecimiento Endotelial Vascular/genética
6.
Mech Ageing Dev ; 194: 111432, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33422562

RESUMEN

Cellular senescence is a state of stable and irreversible cell cycle arrest with active metabolism, that normal cells undergo after a finite number of divisions (Hayflick limit). Senescence can be triggered by intrinsic and/or extrinsic stimuli including telomere shortening at the end of a cell's lifespan (telomere-initiated senescence) and in response to oxidative, genotoxic or oncogenic stresses (stress-induced premature senescence). Several effector mechanisms have been proposed to explain senescence programmes in diploid cells, including the induction of DNA damage responses, a senescence-associated secretory phenotype and epigenetic changes. Senescent cells display senescence-associated-ß-galactosidase activity and undergo chromatin remodeling resulting in heterochromatinisation. Senescence is established by the pRb and p53 tumour suppressor networks. Senescence has been detected in in vitro cellular settings and in premalignant, but not malignant lesions in mice and humans expressing mutant oncogenes. Despite oncogene-induced senescence, which is believed to be a cancer initiating barrier and other tumour suppressive mechanisms, benign cancers may still develop into malignancies by bypassing senescence. Here, we summarise the functional genetic screens that have identified genes, uncovered pathways and characterised mechanisms involved in senescence evasion. These include cell cycle regulators and tumour suppressor pathways, DNA damage response pathways, epigenetic regulators, SASP components and noncoding RNAs.


Asunto(s)
Envejecimiento/genética , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Senescencia Celular/genética , Regulación Neoplásica de la Expresión Génica , Factores de Edad , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Redes Reguladoras de Genes , Humanos , Oncogenes , ARN no Traducido/genética , ARN no Traducido/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Cancers (Basel) ; 12(11)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121034

RESUMEN

Angiogenesis has long been considered to facilitate and sustain cancer growth, making the introduction of anti-angiogenic agents that disrupt the vascular endothelial growth factor/receptor (VEGF/VEGFR) pathway an important milestone at the beginning of the 21st century. Originally research on VEGF signaling focused on its survival and mitogenic effects towards endothelial cells, with moderate so far success of anti-angiogenic therapy. However, VEGF can have multiple effects on additional cell types including immune and tumor cells, by directly influencing and promoting tumor cell survival, proliferation and invasion and contributing to an immunosuppressive microenvironment. In this review, we summarize the effects of the VEGF/VEGFR pathway on non-endothelial cells and the resulting implications of anti-angiogenic agents that include direct inhibition of tumor cell growth and immunostimulatory functions. Finally, we present how previously unappreciated studies on VEGF biology, that have demonstrated immunomodulatory properties and tumor regression by disrupting the VEGF/VEGFR pathway, now provide the scientific basis for new combinational treatments of immunotherapy with anti-angiogenic agents.

8.
Free Radic Biol Med ; 160: 391-402, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32822744

RESUMEN

Glioblastoma multiforme (GBM) is the most common and aggressive primary malignant brain tumor. Maximal surgical resection followed by radiotherapy and concomitant chemotherapy with temozolomide remains the first-line therapy, prolonging the survival of patients by an average of only 2.5 months. There is therefore an urgent need for novel therapeutic strategies to improve clinical outcomes. Reactive oxygen species (ROS) are an important contributor to GBM development. Here, we describe the rational design and synthesis of a stable hybrid molecule tethering two ROS regulating moieties, with the aim of constructing a chemopreventive and anticancer chemical entity that retains the properties of the parent compounds. We utilized the selective AT1R antagonist losartan, leading to the inhibition of ROS levels, and the antioxidant flavonoid quercetin. In GBM cells, we show that this hybrid retains the binding potential of losartan to the AT1R through competition-binding experiments and simultaneously exhibits ROS inhibition and antioxidant capacity similar to native quercetin. In addition, we demonstrate that the hybrid is able to alter the cell cycle distribution of GBM cells, leading to cell cycle arrest and to the induction of cytotoxic effects. Last, the hybrid significantly and selectively reduces cancer cell proliferation and angiogenesis in primary GBM cultures with respect to the isolated parent components or their simple combination, further emphasizing the potential utility of the current hybridization approach in GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Losartán , Quercetina/farmacología , Temozolomida/farmacología
9.
Life Sci Alliance ; 2(6)2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31792060

RESUMEN

Through the progressive accumulation of genetic and epigenetic alterations in cellular physiology, non-small-cell lung cancer (NSCLC) evolves in distinct steps involving mutually exclusive oncogenic mutations in K-Ras or EGFR along with inactivating mutations in the p53 tumor suppressor. Herein, we show two independent in vivo lung cancer models in which CHUK/IKK-α acts as a major NSCLC tumor suppressor. In a novel transgenic mouse strain, wherein IKKα ablation is induced by tamoxifen (Tmx) solely in alveolar type II (AT-II) lung epithelial cells, IKKα loss increases the number and size of lung adenomas in response to the chemical carcinogen urethane, whereas IKK-ß instead acts as a tumor promoter in this same context. IKKα knockdown in three independent human NSCLC lines (independent of K-Ras or p53 status) enhances their growth as tumor xenografts in immune-compromised mice. Bioinformatics analysis of whole transcriptome profiling followed by quantitative protein and targeted gene expression validation experiments reveals that IKKα loss can result in the up-regulation of activated HIF-1-α protein to enhance NSCLC tumor growth under hypoxic conditions in vivo.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Quinasa I-kappa B/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Proliferación Celular/fisiología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Receptores ErbB/genética , Femenino , Perfilación de la Expresión Génica , Xenoinjertos , Humanos , Quinasa I-kappa B/deficiencia , Neoplasias Pulmonares/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Regulación hacia Arriba , Proteínas ras/genética
10.
Cells ; 8(10)2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31557902

RESUMEN

The neoplastic transformation of normal to metastatic cancer cells is a complex multistep process involving the progressive accumulation of interacting genetic and epigenetic changes that alter gene function and affect cell physiology and homeostasis. Epigenetic changes including DNA methylation, histone modifications and changes in noncoding RNA expression, and deregulation of epigenetic processes can alter gene expression during the multistep process of carcinogenesis. Cancer progression and metastasis through an 'invasion-metastasis cascade' involving an epithelial-to-mesenchymal cell transition (EMT), the generation of cancer stem cells (CSCs), invasion of adjacent tissues, and dissemination are fueled by inflammation, which is considered a hallmark of cancer. Chronic inflammation is generated by inflammatory cytokines secreted by the tumor and the tumor-associated cells within the tumor microenvironment. Inflammatory cytokine signaling initiates signaling pathways leading to the activation of master transcription factors (TFs) such as Smads, STAT3, and NF-κB. Moreover, the same inflammatory responses also activate EMT-inducing TF (EMT-TF) families such as Snail, Twist, and Zeb, and epigenetic regulators including DNA and histone modifying enzymes and micoRNAs, through complex interconnected positive and negative feedback loops to regulate EMT and CSC generation. Here, we review the molecular regulatory feedback loops and networks involved in inflammatory cytokine-induced EMT and CSC generation.


Asunto(s)
Citocinas/farmacología , Epigénesis Genética/fisiología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Mediadores de Inflamación/farmacología , Células Madre Neoplásicas , Animales , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/genética , Retroalimentación Fisiológica/efectos de los fármacos , Retroalimentación Fisiológica/fisiología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/fisiología , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética
11.
J Exp Clin Cancer Res ; 38(1): 103, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808373

RESUMEN

BACKGROUND: Tumor suppressor p53 protein is frequently mutated in a large majority of cancers. These mutations induce local or global changes in protein structure thereby affecting its binding to DNA. The structural differences between the wild type and mutant p53 thus provide an opportunity to selectively target mutated p53 harboring cancer cells. Restoration of wild type p53 activity in mutants using small molecules that can revert the structural changes have been considered for cancer therapeutics. METHODS: We used bioinformatics and molecular docking tools to investigate the structural changes between the wild type and mutant p53 proteins (p53V143A, p53R249S, p53R273H and p53Y220C) and explored the therapeutic potential of Withaferin A and Withanone for restoration of wild type p53 function in cancer cells. Cancer cells harboring the specific mutant p53 proteins were used for molecular assays to determine the mutant or wild type p53 functions. RESULTS: We found that p53V143A mutation does not show any significant structural changes and was also refractory to the binding of withanolides. p53R249S mutation critically disturbed the H-bond network and destabilized the DNA binding site. However, withanolides did not show any selective binding to either this mutant or other similar variants. p53Y220C mutation created a cavity near the site of mutation with local loss of hydrophobicity and water network, leading to functionally inactive conformation. Mutated structure could accommodate withanolides suggesting their conformational selectivity to target p53Y220C mutant. Using human cell lines containing specific p53 mutant proteins, we demonstrated that Withaferin A, Withanone and the extract rich in these withanolides caused restoration of wild type p53 function in mutant p53Y220C cells. This was associated with induction of p21WAF-1-mediated growth arrest/apoptosis. CONCLUSION: The study suggested that withanolides may serve as highly potent anticancer compounds for treatment of cancers harboring a p53Y220C mutation.


Asunto(s)
Antineoplásicos/farmacología , Extractos Vegetales/farmacología , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Biología Computacional , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Proteína p53 Supresora de Tumor/efectos de los fármacos , Witanólidos/farmacología
12.
Biomedicines ; 6(2)2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29601548

RESUMEN

The NF-κB family of transcription factors regulate the expression of genes encoding proteins and microRNAs (miRNA, miR) precursors that may either positively or negatively regulate a variety of biological processes such as cell cycle progression, cell survival, and cell differentiation. The NF-κB-miRNA transcriptional regulatory network has been implicated in the regulation of proinflammatory, immune, and stress-like responses. Gene regulation by miRNAs has emerged as an additional epigenetic mechanism at the post-transcriptional level. The expression of miRNAs can be regulated by specific transcription factors (TFs), including the NF-κB TF family, and vice versa. The interplay between TFs and miRNAs creates positive or negative feedback loops and also regulatory networks, which can control cell fate. In the current review, we discuss the impact of NF-κB-miRNA interplay and feedback loops and networks impacting on inflammation in cancer. We provide several paradigms of specific NF-κB-miRNA networks that can regulate inflammation linked to cancer. For example, the NF-κB-miR-146 and NF-κB-miR-155 networks fine-tune the activity, intensity, and duration of inflammation, while the NF-κB-miR-21 and NF-κB-miR-181b-1 amplifying loops link inflammation to cancer; and p53- or NF-κB-regulated miRNAs interconnect these pathways and may shift the balance to cancer development or tumor suppression. The availability of genomic data may be useful to verify and find novel interactions, and provide a catalogue of 162 miRNAs targeting and 40 miRNAs possibly regulated by NF-κB. We propose that studying active TF-miRNA transcriptional regulatory networks such as NF-κB-miRNA networks in specific cancer types can contribute to our further understanding of the regulatory interplay between inflammation and cancer, and also perhaps lead to the development of pharmacologically novel therapeutic approaches to combat cancer.

13.
Biosci Rep ; 38(3)2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29555826

RESUMEN

Matrix metalloproteinases (MMPs) are extracellular matrix (ECM) remodelling enzymes involved in developmental processes, tissue remodelling and repair, inflammatory and immune diseases and cancer. In a recent issue of Bioscience Reports (vol. 37, issue 6, BSR20170973), Liu and colleagues investigated the expression of MMPs such as MMP-1 (interstitial collagenase), MMP-3 (stromelysin 1) and MMP-13 (collagenase 3) in human periodontal ligament fibroblasts (hPDLFs) regulated by interleukin-12 (IL-12), a cytokine implicated in inflammatory and immune responses. They showed that IL-12 activates canonical nuclear factor-κB (NF-κB) signalling leading to increased expression of MMP-1, MMP-3 and MMP-13, and to a smaller reduction in the expression of MMP-2 (gelatinase A) and MMP-9 (gelatinase B) at both mRNA and protein levels, with corresponding changes in the secreted levels of these ECM-remodelling and immune regulatory metalloproteinases. While canonical NF-κB signalling regulates these MMPs, it also interacts with additional factors to determine whether some of these MMPs are induced or downregulated, in response to IL-12. Here, we comment on the possible mechanisms of IL-12-mediated transcriptional regulation of MMPs.


Asunto(s)
Metaloproteinasa 12 de la Matriz , Ligamento Periodontal/enzimología , Fibroblastos/enzimología , Humanos , Interleucina-12 , FN-kappa B
14.
Dalton Trans ; 47(10): 3549-3567, 2018 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-29436543

RESUMEN

Although the interactions of oligopyridine ruthenium complexes with DNA have been widely studied, the biological activity of similar diruthenium oligopyridine complexes conjugated with peptides has not been investigated. Herein, we report the stepwise synthesis and characterization of diruthenium complexes with the general formula [(La)Ru(tppz)Ru(Lb)]n+ (tppz = 2,3,5,6-tetra(2-pyridyl)pyrazine, La = 2,2':6',2''-terpyridine or 4-phenyl-2,2':6',2''-terpyridine and Lb = 2,2':6',2''-terpyridine-4'-CO(Gly1-Gly2-Gly3-LysCONH2) (5), (6), n = 5; 2,2':6',2''-terpyridine-4'-CO(Gly1-Gly2-Lys1-Lys2CONH2) (7), (8), n = 6; 2,2':6',2''-terpyridine-4'-CO(Ahx-Lys1Lys2CONH2) (9), (10), n = 5, Ahx = 6-aminohexanoic acid). The compounds [(trpy)Ru(tppz)Ru(trpy-CO2H)](PF6)4, (2)(PF6)4, [(ptrpy)Ru(tppz)Ru(trpy-CO2H)](PF6)4, (3)(PF6)4 and [(ptrpy)Ru(tppz)Ru(trpy)](PF6)4, (4)(PF6)4 were also characterized by single crystal X-ray methods. Moreover, the interactions of the chloride salts (5), (6) and (4) with the self-complementary dodecanucleotide duplex d(5'-CGCGAATTCGCG-3')2 were studied by NMR spectroscopic techniques. The results show that complex (4) binds in the central part of the oligonucleotide, from the minor groove through the ligand ptrpy, while the ligand trpy, which was located on the other side of the diruthenium core, does not contribute to the binding. Complex (5) binds similarly, through the ligand ptrpy. However, the induced upfield shifts of the ptrpy proton signals are significantly lower than the corresponding ones in the case of (4), indicating much lower binding affinity. This is clear evidence that the tethered peptide Gly1-Gly2-Gly3-Lys1CONH2 hinders the complex binding, even though it contains groups that are able to assist it (e.g., the positively charged amino group of lysine, the peptidic backbone, the terminal amide). Complex (6) shows a non-specific binding, interacting through electrostatic forces. The chloride salts of (4), (5) and (6) had insignificant effects on the cell cycle distribution and marginal cytotoxicity (IC50 > 750 µM) against human lung cancer cell lines H1299 and H1437, indicating that their binding to the oligonucleotide is not a sufficient condition for their cytotoxicity.


Asunto(s)
ADN/metabolismo , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/farmacología , Péptidos/química , Piridinas/química , Rutenio/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Técnicas de Química Sintética , Humanos , Ligandos , Modelos Moleculares , Conformación Molecular , Compuestos Organometálicos/química , Compuestos Organometálicos/metabolismo
15.
J Cell Biochem ; 119(2): 2110-2123, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28857308

RESUMEN

Methylation of arginine residues is an important modulator of protein function that is involved in epigenetic gene regulation, DNA damage response and RNA maturation, as well as in cellular signaling. The enzymes that catalyze this post-translational modification are called protein arginine methyltransferases (PRMTs), of which PRMT1 is the predominant enzyme. Human PRMT1 has previously been shown to occur in seven splicing isoforms, which are differentially abundant in different tissues, and have distinct substrate specificity and intracellular localization. Here we characterize a novel splicing isoform which does not affect the amino-terminus of the protein like the seven known isoforms, but rather lacks exons 8 and 9 which encode the dimerization arm of the enzyme that is essential for enzymatic activity. Consequently, the isoform does not form catalytically active oligomers with the other endogenous PRMT1 isoforms. Photobleaching experiments reveal an immobile fraction of the enzyme in the nucleus, in accordance with earlier results from our laboratory that had shown a tight association of inhibited or inactivated PRMT1 with chromatin and the nuclear scaffold. Thus, it apparently is able to bind to the same substrates as catalytically active PRMT1. This isoform is found in a variety of cell lines, but is increased in those of cancer origin or after expression of the EMT-inducing transcriptional repressor Snail1. We discuss that the novel isoform could act as a modulator of PRMT1 activity in cancer cells by acting as a competitive inhibitor that shields substrates from access to active PRMT1 oligomers.


Asunto(s)
Empalme Alternativo , Neoplasias/genética , Proteína-Arginina N-Metiltransferasas/química , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Regulación hacia Arriba , Células A549 , Dominio Catalítico , Línea Celular Tumoral , Núcleo Celular/genética , Exones , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Conformación Proteica , Isoformas de Proteínas/química , Multimerización de Proteína
16.
Cell Oncol (Dordr) ; 40(4): 303-339, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28748501

RESUMEN

BACKGROUND: Cancer is one of the leading causes of mortality. The neoplastic transformation of normal cells to cancer cells is caused by a progressive accumulation of genetic and epigenetic alterations in oncogenes, tumor suppressor genes and epigenetic regulators, providing cells with new properties, collectively known as the hallmarks of cancer. During the process of neoplastic transformation cells progressively acquire novel characteristics such as unlimited growth potential, increased motility and the ability to migrate and invade adjacent tissues, the ability to spread from the tumor of origin to distant sites, and increased resistance to various types of stresses, mostly attributed to the activation of genetic stress-response programs. Accumulating evidence indicates a crucial role of microRNAs (miRNAs or miRs) in the initiation and progression of cancer, acting either as oncogenes (oncomirs) or as tumor suppressors via several molecular mechanisms. MiRNAs comprise a class of small ~22 bp long noncoding RNAs that play a key role in the regulation of gene expression at the post-transcriptional level, acting as negative regulators of mRNA translation and/or stability. MiRNAs are involved in the regulation of a variety of biological processes including cell cycle progression, DNA damage responses and apoptosis, epithelial-to-mesenchymal cell transitions, cell motility and stemness through complex and interactive transcription factor-miRNA regulatory networks. CONCLUSIONS: The impact and the dynamic potential of miRNAs with oncogenic or tumor suppressor properties in each stage of the multistep process of tumorigenesis, and in the adaptation of cancer cells to stress, are discussed. We propose that the balance between oncogenic versus tumor suppressive miRNAs acting within transcription factor-miRNA regulatory networks, influences both the multistage process of neoplastic transformation, whereby normal cells become cancerous, and their stress responses. The role of specific tumor-derived exosomes containing miRNAs and their use as biomarkers in diagnosis and prognosis, and as therapeutic targets, are also discussed.


Asunto(s)
Carcinogénesis/genética , Transformación Celular Neoplásica/genética , MicroARNs/genética , Neoplasias/genética , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , Neoplasias/patología , Pronóstico
17.
Exp Gerontol ; 96: 110-122, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28658612

RESUMEN

Senescence recapitulates the ageing process at the cell level. A senescent cell stops dividing and exits the cell cycle. MicroRNAs (miRNAs) acting as master regulators of transcription, have been implicated in senescence. In the current study we investigated and compared the expression of miRNAs in young versus senescent human fibroblasts (HDFs), and analysed the role of mRNAs expressed in replicative senescent HFL-1 HDFs. Cell cycle analysis confirmed that HDFs accumulated in G1/S cell cycle phase. Nanostring analysis of isolated miRNAs from young and senescent HFL-1 showed that a distinct set of 15 miRNAs were significantly up-regulated in senescent cells including hsa-let-7d-5p, hsa-let-7e-5p, hsa-miR-23a-3p, hsa-miR-34a-5p, hsa-miR-122-5p, hsa-miR-125a-3p, hsa-miR-125a-5p, hsa-miR-125b-5p, hsa-miR-181a-5p, hsa-miR-221-3p, hsa-miR-222-3p, hsa-miR-503-5p, hsa-miR-574-3p, hsa-miR-574-5p and hsa-miR-4454. Importantly, pathway analysis of miRNA target genes down-regulated during replicative senescence in a public RNA-seq data set revealed a significant high number of genes regulating cell cycle progression, both G1/S and G2/M cell cycle phase transitions and telomere maintenance. The reduced expression of selected miRNA targets, upon replicative and oxidative-stress induced senescence, such as the cell cycle effectors E2F1, CcnE, Cdc6, CcnB1 and Cdc25C was verified at the protein and/or RNA levels. Induction of G1/S cell cycle phase arrest and down-regulation of cell cycle effectors correlated with the up-regulation of miR-221 upon both replicative and oxidative stress-induced senescence. Transient expression of miR-221/222 in HDFs promoted the accumulation of HDFs in G1/S cell cycle phase. We propose that miRNAs up-regulated during replicative senescence may act in concert to induce cell cycle phase arrest and telomere erosion, establishing a senescent phenotype.


Asunto(s)
Senescencia Celular/fisiología , Fibroblastos/fisiología , Genes cdc/fisiología , Pulmón/fisiología , MicroARNs/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Expresión Génica/fisiología , Humanos , Peróxido de Hidrógeno/farmacología , Oxidantes/farmacología , Estrés Oxidativo/fisiología
18.
Mob DNA ; 7: 10, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27158269

RESUMEN

BACKGROUND: Retrotransposons are mobile elements that have a high impact on shaping the mammalian genomes. Since the availability of whole genomes, genomic analyses have provided novel insights into retrotransposon biology. However, many retrotransposon families and their possible genomic impact have not yet been analysed. RESULTS: Here, we analysed the structural features, the genomic distribution and the evolutionary history of mouse VL30 LTR-retrotransposons. In total, we identified 372 VL30 sequences categorized as 86 full-length and 49 truncated copies as well as 237 solo LTRs, with non-random chromosomal distribution. Full-length VL30s were highly conserved elements with intact retroviral replication signals, but with no protein-coding capacity. Analysis of LTRs revealed a high number of common transcription factor binding sites, possibly explaining the known inducible and tissue-specific expression of individual elements. The overwhelming majority of full-length and truncated elements (82/86 and 40/49, respectively) contained one or two specific motifs required for binding of the VL30 RNA to the poly-pyrimidine tract-binding protein-associated splicing factor (PSF). Phylogenetic analysis revealed three VL30 groups with the oldest emerging ~17.5 Myrs ago, while the other two were characterized mostly by new genomic integrations. Most VL30 sequences were found integrated either near, adjacent or inside transcription start sites, or into introns or at the 3' end of genes. In addition, a significant number of VL30s were found near Krueppel-associated box (KRAB) genes functioning as potent transcriptional repressors. CONCLUSION: Collectively, our study provides data on VL30s related to their: (a) number and structural features involved in their transcription that play a role in steroidogenesis and oncogenesis; (b) evolutionary history and potential for retrotransposition; and (c) unique genomic distribution and impact on gene expression.

20.
ACS Chem Biol ; 9(12): 2737-41, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25211642

RESUMEN

Bcl-2 family proteins are important regulators of apoptosis and its antiapoptotic members, which are overexpressed in many types of cancer, are of high prognostic significance, establishing them as attractive therapeutic targets. Quercetin, a natural flavonoid, has drawn much attention because it exerts anticancer effects, while sparing normal cells. A multidisciplinary approach has been employed herein, in an effort to reveal its mode of action including dose-response antiproliferative activity and induced apoptosis effect, biochemical and physicochemical assays, and computational calculations. It may be concluded that, quercetin binds directly to the BH3 domain of Bcl-2 and Bcl-xL proteins, thereby inhibiting their activity and promoting cancer cell apoptosis.


Asunto(s)
Antineoplásicos Fitogénicos/química , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-bcl-2/química , Quercetina/química , Proteína bcl-X/química , Antineoplásicos Fitogénicos/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Células Jurkat , Simulación del Acoplamiento Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Quercetina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA