Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Sci Rep ; 14(1): 14561, 2024 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914647

RESUMEN

Variations in the biomechanical stiffness of brain tumors can not only influence the difficulty of surgical resection but also impact postoperative outcomes. In a prospective, single-blinded study, we utilize pre-operative magnetic resonance elastography (MRE) to predict the stiffness of intracranial tumors intraoperatively and assess the impact of increased tumor stiffness on clinical outcomes following microsurgical resection of vestibular schwannomas (VS) and meningiomas. MRE measurements significantly correlated with intraoperative tumor stiffness and baseline hearing status of VS patients. Additionally, MRE stiffness was elevated in patients that underwent sub-total tumor resection compared to gross total resection and those with worse postoperative facial nerve function. Furthermore, we identify tumor microenvironment biomarkers of increased stiffness, including αSMA + myogenic fibroblasts, CD163 + macrophages, and HABP (hyaluronic acid binding protein). In a human VS cell line, a dose-dependent upregulation of HAS1-3, enzymes responsible for hyaluronan synthesis, was observed following stimulation with TNFα, a proinflammatory cytokine present in VS. Taken together, MRE is an accurate, non-invasive predictor of tumor stiffness in VS and meningiomas. VS with increased stiffness portends worse preoperative hearing and poorer postoperative outcomes. Moreover, inflammation-mediated hyaluronan deposition may lead to increased stiffness.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Meningioma , Neuroma Acústico , Humanos , Meningioma/cirugía , Meningioma/metabolismo , Meningioma/patología , Meningioma/diagnóstico por imagen , Neuroma Acústico/cirugía , Neuroma Acústico/metabolismo , Neuroma Acústico/patología , Neuroma Acústico/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Femenino , Masculino , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Anciano , Estudios Prospectivos , Adulto , Neoplasias Meníngeas/cirugía , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patología , Neoplasias Meníngeas/diagnóstico por imagen , Resultado del Tratamiento , Microambiente Tumoral , Imagen por Resonancia Magnética/métodos
2.
JOR Spine ; 7(2): e1335, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38741919

RESUMEN

Background: In vivo quantification of the structure-function relationship of the intervertebral disc (IVD) via quantitative MRI has the potential to aid objective stratification of disease and evaluation of restorative therapies. Magnetic resonance elastography (MRE) is an imaging technique that assesses tissue shear properties and combined with quantitative MRI metrics reflective of composition can inform structure-function of the IVD. The objectives of this study were to (1) compare MRE- and rheometry-derived shear modulus in agarose gels and nucleus pulposus (NP) tissue and (2) correlate MRE and rheological measures of NP tissue with composition and quantitative MRI. Method: MRE and MRI assessment (i.e., T1ρ and T2 mapping) of agarose samples (2%, 3%, and 4% (w/v); n = 3-4/%) and of bovine caudal IVDs after equilibrium dialysis in 5% or 25% PEG (n = 13/PEG%) was conducted. Subsequently, agarose and NP tissue underwent torsional mechanical testing consisting of a frequency sweep from 1 to 100 Hz at a rotational strain of 0.05%. NP tissue was additionally evaluated under creep and stress relaxation conditions. Linear mixed-effects models and univariate regression analyses evaluated the effects of testing method, %agarose or %PEG, and frequency, as well as correlations between parameters. Results: MRE- and rheometry-derived shear moduli were greater at 100 Hz than at 80 Hz in all agarose and NP tissue samples. Additionally, all samples with lower water content had higher complex shear moduli. There was a significant correlation between MRE- and rheometry-derived modulus values for homogenous agarose samples. T1ρ and T2 relaxation times for agarose and tissue were negatively correlated with complex shear modulus derived from both techniques. For NP tissue, shear modulus was positively correlated with GAG/wet-weight and negatively correlated with %water content. Conclusion: This work demonstrates that MRE can assess hydration-induced changes in IVD shear properties and further highlights the structure-function relationship between composition and shear mechanical behaviors of NP tissue.

3.
Res Sq ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38562870

RESUMEN

The lung is a dynamic mechanical organ and several pulmonary disorders are characterized by heterogeneous changes in the lung's local mechanical properties (i.e. stiffness). These alterations lead to abnormal lung tissue deformation (i.e. strain) which have been shown to promote disease progression. Although heterogenous mechanical properties may be important biomarkers of disease, there is currently no non-invasive way to measure these properties for clinical diagnostic purposes. In this study, we use a magnetic resonance elastography technique to measure heterogenous distributions of the lung's shear stiffness in healthy adults and in people with Cystic Fibrosis. Additionally, computational finite element models which directly incorporate the measured heterogenous mechanical properties were developed to assess the effects on lung tissue deformation. Results indicate that consolidated lung regions in people with Cystic Fibrosis exhibited increased shear stiffness and reduced spatial heterogeneity compared to surrounding non-consolidated regions. Accounting for heterogenous lung stiffness in healthy adults did not change the globally averaged strain magnitude obtained in computational models. However, computational models that used heterogenous stiffness measurements predicted significantly more variability in local strain and higher spatial strain gradients. Finally, computational models predicted lower strain variability and spatial strain gradients in consolidated lung regions compared to non-consolidated regions. These results indicate that spatial variability in shear stiffness alters local strain and strain gradient magnitudes in people with Cystic Fibrosis. This imaged-based modeling technique therefore represents a clinically viable way to non-invasively assess lung mechanics during both health and disease.

4.
J Biomech ; 164: 111965, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38354514

RESUMEN

Nucleus pulposus (NP) tissue in the intervertebral disc (IVD) is a viscoelastic material exhibiting both solid- and fluid-like mechanical behaviors. Advances in viscoelastic models incorporating fractional calculus, such as the Fractional Zener (FZ) model, have potential to describe viscoelastic behaviors. The objectives of this study were to determine whether the FZ model can accurately describe the shear viscoelastic properties of NP tissue and determine if the fractional order (α) is related to tissue hydration. 30 caudal IVDs underwent equilibrium dialysis in 5% or 25% polyethylene glycol solutions to alter tissue hydration. Excised NP tissue underwent stress relaxation testing in shear and unconfined compression. Stress relaxation data was fitted to the FZ model to obtain viscoelastic properties. In both loading modes, the initial modulus was greater for the less hydrated 25% equilibrated samples compared to 5% with no change in the equilibrium modulus. Samples with lower water content (25% samples) had shorter relaxation times in shear and longer time constants in compression, highlighting the different interactions between the fluid and solid matrix in loading modes. Samples with lower water content had α values closer to 0, indicating that less hydrated samples behaved more solid-like on the viscoelastic spectrum. Tissue hydration correlated with α values for 25% samples in shear. This study demonstrates that the FZ model may be used to describe IVD tissue behavior under both loading modes; however, the greatest utility of the FZ model is in describing flow-independent shear behaviors, and α may inform tissue hydration in shear.


Asunto(s)
Disco Intervertebral , Núcleo Pulposo , Elasticidad , Estrés Mecánico , Agua
5.
Invest Radiol ; 58(4): 299-306, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36730906

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis is responsible for 40,000 deaths annually in the United States. A hallmark of idiopathic pulmonary fibrosis is elevated collagen deposition, which alters lung stiffness. Clinically relevant ways to measure changes in lung stiffness during pulmonary fibrosis are not available, and new noninvasive imaging methods are needed to measure changes in lung mechanical properties. OBJECTIVES: Magnetic resonance elastography (MRE) is an in vivo magnetic resonance imaging technique proven to detect changes in shear stiffness in different organs. This study used MRE, histology, and bronchoalveolar lavage (BAL) to study changes in the mechanical and structural properties of the lungs after bleomycin-induced pulmonary fibrosis in pigs. MATERIALS AND METHODS: Pulmonary fibrosis was induced in 9 Yorkshire pigs by intratracheal instillation of 2 doses of bleomycin into the right lung only. Magnetic resonance elastography scans were performed at baseline and week 4 and week 8 postsurgery in a 1.5 T magnetic resonance imaging scanner using a spin-echo echo planar imaging sequence to measure changes in lung shear stiffness. At the time of each scan, a BAL was performed. After the final scan, whole lung tissue was removed and analyzed for histological changes. RESULTS: Mean MRE-derived stiffness measurements at baseline, week 4, and week 8 for the control (left) lungs were 1.02 ± 0.27 kPa, 0.86 ± 0.29 kPa, and 0.68 ± 0.20 kPa, respectively. The ratio of the shear stiffness in the injured (right) lung to the uninjured control (left) lung at baseline, week 4, and week 8 was 0.98 ± 0.23, 1.52 ± 0.41, and 1.64 ± 0.40, respectively. High-dose animals showed increased protein in BAL fluid, elevated inflammation observed by the presence of patchy filtrates, and enhanced collagen and α-smooth muscle actin staining on histological sections. Low-dose animals and the control (left) lungs of high-dose animals did not show significant histopathological changes. CONCLUSION: This study demonstrated that MRE can be used to detect changes in lung stiffness in pigs after bleomycin challenge.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Fibrosis Pulmonar Idiopática , Animales , Porcinos , Diagnóstico por Imagen de Elasticidad/métodos , Bleomicina , Pulmón/diagnóstico por imagen , Pulmón/patología , Imagen por Resonancia Magnética/métodos , Modelos Animales , Fibrosis Pulmonar Idiopática/patología
6.
Magn Reson Med ; 88(4): 1840-1850, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35691940

RESUMEN

PURPOSE: Magnetic resonance elastography (MRE) maps the viscoelastic properties of soft tissues for diagnostic purposes. However, different MRE inversion methods yield different results, which hinder comparison of values, standardization, and establishment of quantitative MRE markers. Here, we introduce an expandable, open-access, webserver-based platform that offers multiple inversion techniques for multifrequency, 3D MRE data. METHODS: The platform comprises a data repository and standard MRE inversion methods including local frequency estimation (LFE), direct-inversion based multifrequency dual elasto-visco (MDEV) inversion, and wavenumber-based (k-) MDEV. The use of the platform is demonstrated in phantom data and in vivo multifrequency MRE data of the kidneys and brains of healthy volunteers. RESULTS: Detailed maps of stiffness were generated by all inversion methods showing similar detail of anatomy. Specifically, the inner renal cortex had higher shear wave speed (SWS) than renal medulla and outer cortex without lateral differences. k-MDEV yielded higher SWS values than MDEV or LFE (full kidney/brain k-MDEV: 2.71 ± 0.19/1.45 ± 0.14 m/s, MDEV: 2.14 ± 0.16/0.99 ± 0.11 m/s, LFE: 2.12 ± 0.15/0.89 ± 0.06 m/s). CONCLUSION: The freely accessible platform supports the comparison of MRE results obtained with different inversion methods, filter thresholds, or excitation frequencies, promoting reproducibility in MRE across community-developed methods.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Humanos , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados
7.
Radiology ; 304(3): 721-729, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35638926

RESUMEN

Background Abdominal aortic aneurysm (AAA) diameter remains the standard clinical parameter to predict growth and rupture. Studies suggest that using solely AAA diameter for risk stratification is insufficient. Purpose To evaluate the use of aortic MR elastography (MRE)-derived AAA stiffness and stiffness ratio at baseline to identify the potential for future aneurysm rupture or need for surgical repair. Materials and Methods Between August 2013 and March 2019, 72 participants with AAA and 56 healthy participants were enrolled in this prospective study. MRE examinations were performed to estimate AAA stiffness and the stiffness ratio between AAA and its adjacent remote normal aorta. Two Cox proportional hazards models were used to assess AAA stiffness and stiffness ratio for predicting aneurysmal events (subsequent repair, rupture, or diameter >5.0 cm). Log-rank tests were performed to determine a critical stiffness ratio suggesting high-risk AAAs. Baseline AAA stiffness and stiffness ratio were studied using Wilcoxon rank-sum tests between participants with and without aneurysmal events. Spearman correlation was used to investigate the relationship between stiffness and other potential imaging markers. Results Seventy-two participants with AAA (mean age, 71 years ± 9 [SD]; 56 men and 16 women) and 56 healthy participants (mean age, 42 years ± 16; 27 men and 29 women) were evaluated. In healthy participants, aortic stiffness positively correlated with age (ρ = 0.44; P < .001). AAA stiffness (event group [n = 21], 50.3 kPa ± 26.5 [SD]; no-event group [n = 21], 86.9 kPa ± 52.6; P = .01) and the stiffness ratio (event group, 0.7 ± 0.4; no-event group, 2.0 ± 1.4; P < .001) were lower in the event group than the no-event group at a mean follow-up of 449 days. AAA stiffness did not correlate with diameter in the event group (ρ = -0.06; P = .68) or the no-event group (ρ = -0.13; P = .32). AAA stiffness was inversely correlated with intraluminal thrombus area (ρ = -0.50; P = .01). Conclusion Lower abdominal aortic aneurysm stiffness and stiffness ratio measured with use of MR elastography was associated with aneurysmal events at a 15-month follow-up. © RSNA, 2022 See also the editorial by Sakuma in this issue.


Asunto(s)
Aneurisma de la Aorta Abdominal , Rotura de la Aorta , Diagnóstico por Imagen de Elasticidad , Trombosis , Adulto , Anciano , Anciano de 80 o más Años , Aorta Abdominal/diagnóstico por imagen , Aneurisma de la Aorta Abdominal/complicaciones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Factores de Riesgo , Trombosis/complicaciones
8.
J Magn Reson Imaging ; 56(6): 1722-1732, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35289470

RESUMEN

BACKGROUND: Magnetic resonance elastography (MRE) is an imaging technique that can noninvasively assess the shear properties of the intervertebral disc (IVD). Unlike the standard gradient recalled echo (GRE) MRE technique, a spin-echo echo-planar imaging (SE-EPI) sequence has the potential to improve imaging efficiency and patient compliance. PURPOSE: To validate the use of an SE-EPI sequence for MRE of the IVD compared against the standard GRE sequence. STUDY TYPE: Cross-over. SUBJECTS: Twenty-eight healthy volunteers (15 males and 13 females, age range: 19-55). FIELD STRENGTH/SEQUENCE: 3 T; GRE, SE-EPI with breath holds (SE-EPI-BH) and SE-EPI with free breathing (SE-EPI-FB) MRE sequences. ASSESSMENT: MRE-derived shear stiffnesses were calculated via principal frequency analysis. SE-EPI derived shear stiffness and octahedral shear strain signal-to-noise ratios (OSS-SNR) were compared against those derived using the GRE sequence. The reproducibility and repeatability of SE-EPI stiffness measurements were determined. Shear stiffness was evaluated in the nucleus pulposus (NP) and annulus fibrosus (AF) regions of the disc. Scan times between sequences were compared. STATISTICAL TESTS: Linear mixed models, Bland-Altman plots, and Lin's concordance correlation coefficients (CCCs) were used with P < 0.05 considered statistically significant. RESULTS: Good correlation was observed between shear stiffnesses derived from the SE-EPI sequences with those derived from the GRE sequence with CCC values greater than 0.73 and 0.78 for the NP and AF regions, respectively. OSS-SNR was not significantly different between GRE and SE-EPI sequences (P > 0.05). SE-EPI sequences generated highly reproducible and repeatable stiffness measurements with CCC values greater than 0.97 in the NP and AF regions and reduced scan time by at least 51% compared to GRE. SE-EPI-BH and SE-EPI-FB stiffness measurements were similar with CCC values greater than 0.98 for both regions. DATA CONCLUSION: SE-EPI-based MRE-derived stiffnesses were highly reproducible and repeatable and correlated with current standard GRE MRE-derived stiffness estimates while reducing scan times. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Disco Intervertebral , Masculino , Femenino , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Diagnóstico por Imagen de Elasticidad/métodos , Imagen Eco-Planar/métodos , Reproducibilidad de los Resultados , Relación Señal-Ruido , Disco Intervertebral/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
9.
NMR Biomed ; 35(6): e4685, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34967060

RESUMEN

Cardiac diffusion tensor imaging (DTI) is an emerging technique for the in vivo characterisation of myocardial microstructure, and there is a growing need for its validation and standardisation. We sought to establish the accuracy, precision, repeatability and reproducibility of state-of-the-art pulse sequences for cardiac DTI among 10 centres internationally. Phantoms comprising 0%-20% polyvinylpyrrolidone (PVP) were scanned with DTI using a product pulsed gradient spin echo (PGSE; N = 10 sites) sequence, and a custom motion-compensated spin echo (SE; N = 5) or stimulated echo acquisition mode (STEAM; N = 5) sequence suitable for cardiac DTI in vivo. A second identical scan was performed 1-9 days later, and the data were analysed centrally. The average mean diffusivities (MDs) in 0% PVP were (1.124, 1.130, 1.113) x 10-3  mm2 /s for PGSE, SE and STEAM, respectively, and accurate to within 1.5% of reference data from the literature. The coefficients of variation in MDs across sites were 2.6%, 3.1% and 2.1% for PGSE, SE and STEAM, respectively, and were similar to previous studies using only PGSE. Reproducibility in MD was excellent, with mean differences in PGSE, SE and STEAM of (0.3 ± 2.3, 0.24 ± 0.95, 0.52 ± 0.58) x 10-5  mm2 /s (mean ± 1.96 SD). We show that custom sequences for cardiac DTI provide accurate, precise, repeatable and reproducible measurements. Further work in anisotropic and/or deforming phantoms is warranted.


Asunto(s)
Imagen de Difusión Tensora , Corazón , Anisotropía , Imagen de Difusión Tensora/métodos , Corazón/diagnóstico por imagen , Fantasmas de Imagen , Reproducibilidad de los Resultados
10.
Magn Reson Med ; 87(1): 236-248, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34463400

RESUMEN

PURPOSE: Lung stiffness alters with many diseases; therefore, several MR elastography (MRE) studies were performed earlier to investigate the stiffness of the right lung during breathhold at residual volume and total lung capacity. The aims of this study were 1) to estimate shear stiffness of the lungs using MRE under free breathing and demonstrate the measurements' repeatability and reproducibility, and 2) to compare lung stiffness under free breathing to breathhold and as a function of age and gender. METHODS: Twenty-five healthy volunteers were scanned on a 1.5 Tesla MRI scanner. Spin-echo dual-density spiral and a spin-echo EPI MRE sequences were used to measure shear stiffness of the lungs during free breathing and breathhold at midpoint of tidal volume, respectively. Concordance correlation coefficient and Bland-Altman analyses were performed to determine the repeatability and reproducibility of the spin-echo dual-density spiral-derived shear stiffness. Repeated measures analyses of variances were used to investigate differences in shear stiffness between spin-echo dual-density spiral and spin-echo EPI, right and left lungs, males and females, and different age groups. RESULTS: Free-breathing MRE sequence was highly repeatable and reproducible (concordance correlation coefficient > 0.86 for both lungs). Lung stiffness was significantly lower in breathhold than in free breathing (P < .001), which can be attributed to potential stress relaxation of lung parenchyma or breathhold inconsistencies. However, there was no significant difference between different age groups (P = .08). The left lung showed slightly higher stiffness values than the right lung (P = .14). There is no significant difference in lung stiffness between genders. CONCLUSION: This study demonstrated the feasibility of free-breathing lung MRE with excellent repeatability and reproducibility. Stiffness changes with age and during the respiratory cycle. However, gender does not influence lungs stiffness.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Imagen Eco-Planar , Femenino , Humanos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Reproducibilidad de los Resultados
11.
Magn Reson Imaging Clin N Am ; 29(4): 617-630, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34717849

RESUMEN

Magnetic resonance elastography (MRE) is an emerging noninvasive technique, an alternative to palpation for quantitative assessment of biomechanical properties of tissue. In MRE, tissue stiffness information is obtained by a 3-step process, propagating mechanical waves in the tissues, measuring the wave propagation using modified magnetic resonance (MR) pulse sequences, and generating the quantitative stiffness maps from the MR images. MRE is clinically used in patients with liver diseases, whereas its applications in other organs are still being investigated. At present, the pediatric studies are in the initial stage and preliminary results promise to provide additional information about tissue characteristics.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Hepatopatías , Encéfalo/diagnóstico por imagen , Niño , Humanos , Imagen por Resonancia Magnética
12.
Phys Med Biol ; 66(16)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34261056

RESUMEN

Direct inversion (DI) derives tissue shear modulus by inverting the Helmholtz equation. However, conventional DI is sensitive to data quality due to the ill-posed nature of Helmholtz inversion and thus providing reliable stiffness estimation can be challenging. This becomes more problematic in the case of estimating shear stiffness of the lung in which the low tissue density and short T2* result in considerably low signal-to-noise ratio during lung MRE. In the present study, we propose to perform MRE inversion by compressive recovery (MICRo). Such a technique aims to improve the numerical stability and the robustness to data noise of Helmholtz inversion by using prior knowledge on data noise and transform sparsity of the stiffness map. The developed inversion strategy was first validated in simulated phantoms with known stiffness. Next, MICRo was compared to the standard clinical multi-modal DI (MMDI) method forin vivoliver MRE in healthy subjects and patients with different stages of liver fibrosis. After establishing the accuracy of MICRo, we demonstrated the robustness of the proposed technique against data noise in lung MRE with healthy subjects. In simulated phantoms with single-directional or multi-directional waves, MICRo outperformed DI with Romano filter or Savitsky and Golay filter, especially when the stiffness and/or noise level was high. In hepatic MRE application, agreement was observed between MICRo and MMDI. Measuringin vivolung stiffness, MICRo demonstrated its advantages over filtered DI by yielding stable stiffness estimation at both residual volume and total lung capacity. These preliminary results demonstrate the potential value of the proposed technique and also warrant further investigation in a larger clinical population.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Voluntarios Sanos , Humanos , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética , Fantasmas de Imagen
13.
Magn Reson Med ; 85(5): 2377-2390, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33296103

RESUMEN

Magnetic resonance elastography (MRE) is a phase contrast-based MRI technique that can measure displacement due to propagating mechanical waves, from which material properties such as shear modulus can be calculated. Magnetic resonance elastography can be thought of as quantitative, noninvasive palpation. It is increasing in clinical importance, has become widespread in the diagnosis and staging of liver fibrosis, and additional clinical applications are being explored. However, publications have reported MRE results using many different parameters, acquisition techniques, processing methods, and varied nomenclature. The diversity of terminology can lead to confusion (particularly among clinicians) about the meaning of and interpretation of MRE results. This paper was written by the MRE Guidelines Committee, a group formalized at the first meeting of the ISMRM MRE Study Group, to clarify and move toward standardization of MRE nomenclature. The purpose of this paper is to (1) explain MRE terminology and concepts to those not familiar with them, (2) define "good practices" for practitioners of MRE, and (3) identify opportunities to standardize terminology, to avoid confusion.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Humanos , Cirrosis Hepática/diagnóstico por imagen , Imagen por Resonancia Magnética
14.
NMR Biomed ; 34(1): e4420, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33021342

RESUMEN

INTRODUCTION: Magnetic resonance elastography (MRE)-derived aortic stiffness is a potential biomarker for multiple cardiovascular diseases. Currently, gradient-recalled echo (GRE) MRE is a widely accepted technique to estimate aortic stiffness. However, multi-slice GRE MRE requires multiple breath-holds (BHs), which can be challenging for patients who cannot consistently hold their breath. The aim of this study was to investigate the feasibility of a multi-slice spin-echo echo-planar imaging (SE-EPI) MRE sequence for quantifying in vivo aortic stiffness using a free-breathing (FB) protocol and a single-BH protocol. METHOD: On Scanner 1, 25 healthy subjects participated in the validation of FB SE-EPI against FB GRE. On Scanner 2, another 15 healthy subjects were recruited to compare FB SE-EPI with single-BH SE-EPI. Among all volunteers, five participants were studied on both scanners to investigate the inter-scanner reproducibility of FB SE-EPI aortic MRE. Bland-Altman analysis, Lin's concordance correlation coefficient (LCCC) and coefficient of variation (COV) were evaluated. The phase-difference signal-to-noise ratios (PD SNR) were compared. RESULTS: Aortic MRE using FB SE-EPI and FB GRE yielded similar stiffnesses (paired t-test, P = 0.19), with LCCC = 0.97. The FB SE-EPI measurements were reproducible (intra-scanner LCCC = 0.96) and highly repeatable (LCCC = 0.99). The FB SE-EPI MRE was also reproducible across different scanners (inter-scanner LCCC = 0.96). Single-BH SE-EPI scans yielded similar stiffness to FB SE-EPI scans (LCCC = 0.99) and demonstrated a low COV of 2.67% across five repeated measurements. CONCLUSION: Multi-slice SE-EPI aortic MRE using an FB protocol or a single-BH protocol is reproducible and repeatable with advantage over multi-slice FB GRE in reducing acquisition time. Additionally, FB SE-EPI MRE provides a potential alternative to BH scans for patients who have challenges in holding their breath.


Asunto(s)
Aorta Abdominal/diagnóstico por imagen , Técnicas de Imagen Sincronizada Cardíacas/métodos , Diagnóstico por Imagen de Elasticidad/métodos , Imagen por Resonancia Magnética/métodos , Rigidez Vascular , Aorta Abdominal/fisiología , Técnicas de Imagen Sincronizada Cardíacas/instrumentación , Imagen Eco-Planar/instrumentación , Imagen Eco-Planar/métodos , Diagnóstico por Imagen de Elasticidad/instrumentación , Estudios de Factibilidad , Humanos , Imagen por Resonancia Magnética/instrumentación , Valores de Referencia , Reproducibilidad de los Resultados , Respiración , Relación Señal-Ruido
15.
Invest Radiol ; 55(7): 463-472, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32520516

RESUMEN

OBJECTIVES: Using maximum diameter of an abdominal aortic aneurysm (AAA) alone for management can lead to delayed interventions or unnecessary urgent repairs. Abdominal aortic aneurysm stiffness plays an important role in its expansion and rupture. In vivo aortic magnetic resonance elastography (MRE) was developed to spatially measure AAA stiffness in previous pilot studies and has not been thoroughly validated and evaluated for its potential clinical value. This study aims to evaluate noninvasive in vivo aortic MRE-derived stiffness in an AAA porcine model and investigate the relationships between MRE-derived AAA stiffness and (1) histopathology, (2) uniaxial tensile test, and (3) burst testing for assessing MRE's potential in evaluating AAA rupture risk. MATERIALS AND METHODS: Abdominal aortic aneurysm was induced in 31 Yorkshire pigs (n = 226 stiffness measurements). Animals were randomly divided into 3 cohorts: 2-week, 4-week, and 4-week-burst. Aortic MRE was sequentially performed. Histopathologic analyses were performed to quantify elastin, collagen, and mineral densities. Uniaxial tensile test and burst testing were conducted to measure peak stress and burst pressure for assessing the ultimate wall strength. RESULTS: Magnetic resonance elastography-derived AAA stiffness was significantly higher than the normal aorta. Significant reduction in elastin and collagen densities as well as increased mineralization was observed in AAAs. Uniaxial tensile test and burst testing revealed reduced ultimate wall strength. Magnetic resonance elastography-derived aortic stiffness correlated to elastin density (ρ = -0.68; P < 0.0001; n = 60) and mineralization (ρ = 0.59; P < 0.0001; n = 60). Inverse correlations were observed between aortic stiffness and peak stress (ρ = -0.32; P = 0.0495; n = 38) as well as burst pressure (ρ = -0.55; P = 0.0116; n = 20). CONCLUSIONS: Noninvasive in vivo aortic MRE successfully detected aortic wall stiffening, confirming the extracellular matrix remodeling observed in the histopathologic analyses. These mural changes diminished wall strength. Inverse correlation between MRE-derived aortic stiffness and aortic wall strength suggests that MRE-derived stiffness can be a potential biomarker for clinically assessing AAA wall status and rupture potential.


Asunto(s)
Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad , Animales , Colágeno/metabolismo , Modelos Animales de Enfermedad , Elastina/metabolismo , Porcinos , Calcificación Vascular/diagnóstico por imagen , Rigidez Vascular
16.
NMR Biomed ; 33(4): e4252, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31971301

RESUMEN

To design and validate a rapid Simultaneous Multi-slice (SMS) Magnetic Resonance Elastography technique (MRE), which combines SMS acquisition, in-plane undersampling and an existing rapid Magnetic Resonance Elastography (MREr) scheme to allow accelerated data acquisition in healthy volunteers and comparison against MREr. SMS-MREr sequence was developed by incorporating SMS acquisition scheme into an existing MREr sequence that accelerates MRE acquisition by acquiring data during opposite phases of mechanical vibrations. The MREr sequence accelerated MRE acquisition by acquiring data during opposite phases of mechanical vibrations. Liver MRE was performed on 23 healthy subjects using MREr and SMS-MREr sequences, and mean stiffness values were obtained for manually drawn regions of interest. Linear correlation and agreement between MREr- and SMS-MREr-based stiffness values were investigated. SMS-MREr reduced the scan time by half relative to MREr, and allowed acquisition of four-slice MRE data in a single 17-second breath-hold. Visual comparison suggested agreement between MREr and SMS-MREr elastograms. A Pearson's correlation of 0.93 was observed between stiffness values derived from MREr and SMS-MREr. Bland-Altman analysis demonstrated good agreement, with -0.08 kPa mean bias and narrow limits of agreement (95% CI: 0.23 to -0.39 kPa) between stiffness values obtained using MREr and SMS-MREr. SMS can be combined with other fast MRE approaches to achieve further acceleration. This pushes the limit on the acceleration that can be achieved in MRE acquisition, and makes it possible to conduct liver MRE exams in a single breath-hold.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética , Adulto , Anciano , Fenómenos Biomecánicos , Femenino , Humanos , Hígado/fisiología , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Reproducibilidad de los Resultados , Relación Señal-Ruido , Adulto Joven
17.
NMR Biomed ; 33(4): e4237, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31889353

RESUMEN

Stiffness plays an important role in diagnosing renal fibrosis. However, kidney stiffness is altered by perfusion changes in many kidney diseases. Therefore, the aim of the current study is to determine the correlation of kidney stiffness with water intake. We hypothesize that kidney stiffness will increase with 1 L of water intake due to increased water perfusion to the kidneys. Additionally, stiffness of the kidneys will correlate with apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values before and after water intake. A 3 T MRI scanner was used to perform magnetic resonance elastography and diffusion tensor imaging of the kidneys on 24 healthy subjects (age range: 22-66 years) before and after water intake of 1 L. A 3D T1-weighted bladder scan was also performed to measure bladder volume before and after water intake. A paired t-test was performed to evaluate the effect of water intake on the stiffness of kidneys, in addition to bladder volume. A Spearman correlation test was performed to determine the association between stiffness, bladder volume, ADC and FA values of both kidneys before and after water intake. The results show a significant increase in stiffness in different regions of the kidney (ie, percentage increase ranged from 3.6% to 7.5%) and bladder volume after water intake (all P < 0.05). A moderate significant negative correlation was observed between change in kidney stiffness and bladder volume (concordance correlation coefficient = -0.468, P < 0.05). No significant correlation was observed between stiffness and ADC or FA values before and after water intake in both kidneys (P > 0.05). Water intake caused a significant increase in the stiffness of the kidneys. The negative correlation between the change in kidney stiffness and bladder volume, before and after water intake, indicates higher perfusion pressure in the kidneys, leading to increased stiffness.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Riñón/diagnóstico por imagen , Riñón/fisiología , Imagen por Resonancia Magnética , Perfusión , Agua/química , Adulto , Anciano , Fenómenos Biomecánicos , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Persona de Mediana Edad , Marcadores de Spin , Adulto Joven
18.
NMR Biomed ; 32(11): e4141, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31329347

RESUMEN

The purpose of this study is 1) to demonstrate reproducibility of spin echo-echo planar imaging (SE-EPI) magnetic resonance elastography (MRE) to estimate kidney stiffness; and 2) to compare SE-EPI MRE and gradient recalled echo (GRE) MRE-derived stiffness estimations in various anatomical regions of the kidney. Kidney MRE was performed on 33 healthy subjects (8 for SE-EPI MRE reproducibility and 25 for comparison with GRE MRE; age range: 22-66 years) in a 3 T MRI scanner. To demonstrate SE-EPI MRE reproducibility, subjects were scanned for the first scan and then asked to leave the scan room and repositioned again for the second (repeat) scan. Similar set-up was used for GRE MRE as well. The displacement data was then processed to obtain overall stiffness estimates of the kidney. Concordance correlation analyses were performed to determine SE-EPI MRE reproducibility and agreement between GRE MRE and SE-EPI MRE derived stiffness. A high concordance correlation (ρc  = 0.95; p-value<0.0001) was obtained for SE-EPI MRE reproducibility. Good concordance correlation was observed (ρc  = 0.84; p < 0.0001 for both kidneys, ρc  = 0.91; p < 0.0001 for right kidney and ρc  = 0.78; p < 0.0001 for left kidney) between GRE MRE and SE-EPI MRE derived stiffness measurements. Paired t-test results showed that stiffness value of medulla was significantly (p < 0.0001) greater than cortex using SE-EPI MRE as well as GRE MRE. SE-EPI MRE was reproducible and good agreement was observed in MRE-derived stiffness measurements obtained using SE-EPI and GRE sequences. Therefore, SE-EPI can be used for kidney MRE applications.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Riñón/diagnóstico por imagen , Espectroscopía de Resonancia Magnética , Adulto , Anciano , Imagen Eco-Planar , Humanos , Riñón/fisiopatología , Persona de Mediana Edad , Reproducibilidad de los Resultados , Marcadores de Spin , Adulto Joven
19.
Abdom Radiol (NY) ; 44(8): 2809-2821, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31089778

RESUMEN

Characteristic features of chronic pancreatitis (CP) may be absent on standard imaging studies. Quantitative Magnetic Resonance Imaging (MRI) techniques such as T1 mapping, extracellular volume (ECV) fraction, diffusion-weighted imaging (DWI) with apparent diffusion coefficient map (ADC), MR elastography (MRE), and T1-weighted signal intensity ratio (SIR) have shown promise for the diagnosis and grading severity of CP. However, radiologists still use the Cambridge classification which is based on traditional ductal imaging alone. There is an urgent need to develop new diagnostic criteria that incorporate both parenchymal and ductal features of CP seen by MRI/MRCP. Designed to fulfill this clinical need, we present the MINIMAP study, which was funded in September 2018 by the National Institutes of Health. This is a comprehensive quantitative MR imaging study which will be performed at multiple institutions in well-phenotyped CP patient cohorts. We hypothesize that quantitative MRI/MRCP features can serve as valuable non-invasive imaging biomarkers to detect and grade CP. We will evaluate the role of T1 relaxometry, ECV, T1-weighted gradient echo SIR, MRE, arteriovenous enhancement ratio, ADC, pancreas volume/atrophy, pancreatic fat fraction, ductal features, and pancreatic exocrine output following secretin stimulation in the assessment of CP. We will attempt to generate a multi-parametric pancreatic tissue fibrosis (PTF) scoring system. We anticipate that a quantitative scoring system may serve as a biomarker of pancreatic fibrosis; hence this imaging technique can be used in clinical practice as well as clinical trials to evaluate the efficacy of agents which may slow the progression or reverse measures of CP.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Pancreatitis/diagnóstico por imagen , Enfermedad Crónica , Fibrosis , Humanos , Estudios Multicéntricos como Asunto , Estados Unidos
20.
NMR Biomed ; 32(7): e4102, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31087728

RESUMEN

Lung diseases are one of the leading causes of death worldwide, from which four million people die annually. Lung diseases are associated with changes in the mechanical properties of the lungs. Several studies have shown the feasibility of using magnetic resonance elastography (MRE) to quantify the lungs' shear stiffness. The aim of this study is to investigate the reproducibility and repeatability of lung MRE, and its shear stiffness measurements, obtained using a modified spin echo-echo planar imaging (SE-EPI) MRE sequence. In this study, 21 healthy volunteers were scanned twice by repositioning the volunteers to image right lung both at residual volume (RV) and total lung capacity (TLC) to assess the reproducibility of lung shear stiffness measurements. Additionally, 19 out of the 21 volunteers were scanned immediately without moving the volunteers to test the repeatability of the modified SE-EPI MRE sequence. A paired t-test was performed to determine the significant difference between stiffness measurements obtained at RV and TLC. Concordance correlation and Bland-Altman's analysis were performed to determine the reproducibility and repeatability of the SE-EPI MRE-derived shear stiffness measurements. The SE-EPI MRE sequence is highly repeatable with a concordance correlation coefficient (CCC) of 0.95 at RV and 0.96 at TLC. Similarly, the stiffness measurements obtained across all volunteers were highly reproducible with a CCC of 0.95 at RV and 0.92 at TLC. The mean shear stiffness of the lung at RV was 0.93 ± 0.22 kPa and at TLC was 1.41 ± 0.41 kPa. TLC showed a significantly higher mean shear stiffness (P = 0.0004) compared with RV. Lung MRE stiffness measurements obtained using the SE-EPI sequence were reproducible and repeatable, both at RV and TLC. Lung shear stiffness changes across respiratory cycle with significantly higher stiffness at TLC than RV.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Adulto , Imagen Eco-Planar , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Reproducibilidad de los Resultados , Volumen Residual , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...