Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(4)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38399113

RESUMEN

This research focuses on the production process of soft magnetic composites in the form of 3D bulk compacts made from insulated powder particles using different milling parameters, aiming to enhance their magnetic properties and to study an innovative method of the powder surface "smoothing" technique. A structure analysis using scanning electron microscopy (SEM), EDS, and optical microscopy is also included. We found out that the samples made by the innovative method have lower density values. This can be caused by a more consistent SiO2 insulation layer on highly pure iron powder particles. A correlation between the mechanical smoothing method and better insulation of powder particles can help to provide eco-friendlier solutions for the preparation of soft magnetic composites, such as less usage of reagents and more consistent coverage of powder particles with lower final insulation thickness. The magnetic properties of these compacts are evaluated by coercive field, permeability, and loss measurements. The particle-level smoothing technique in some cases can reduce the value of coercivity up to 20%. For some samples, the ball-to-powder ratio has a bigger impact on magnetic properties than surface treatment, which can be caused by an increased amount of insulation in the SMC compacts.

2.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36675241

RESUMEN

Salicylanilides are pharmacologically active compounds with a wide spectrum of biological effects. Halogenated salicylanilides, which have been used for decades in human and veterinary medicine as anthelmintics, have recently emerged as candidates for drug repurposing in oncology. The most prominent example of salicylanilide anthelmintic, that is intensively studied for its potential anticancer properties, is niclosamide. Nevertheless, recent studies have discovered extensive anticancer potential in a number of other salicylanilides. This potential of their anticancer action is mediated most likely by diverse mechanisms of action such as uncoupling of oxidative phosphorylation, inhibition of protein tyrosine kinase epidermal growth factor receptor, modulation of different signaling pathways as Wnt/ß-catenin, mTORC1, STAT3, NF-κB and Notch signaling pathways or induction of B-Raf V600E inhibition. Here we provide a comprehensive overview of the current knowledge about the proposed mechanisms of action of anticancer activity of salicylanilides based on preclinical in vitro and in vivo studies, or structural requirements for such an activity.


Asunto(s)
Antihelmínticos , Salicilanilidas , Humanos , Salicilanilidas/farmacología , Salicilanilidas/química , Niclosamida/farmacología , Antihelmínticos/farmacología , Transducción de Señal
3.
Materials (Basel) ; 15(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36556742

RESUMEN

One specific group of materials with excellent application potential are powder-compacted soft magnetic materials. These materials have been intensively studied by materials scientists to improve their magnetic properties. This work describes the influence of mechanical smoothing applied to Ni80Fe15Mo5 (wt.%) alloy particle surfaces before the process of compaction. The soft magnetic properties of compacted powders prepared from smoothed and non-smoothed particles were investigated using the following measurements: coercive field, permeability, excess loss, and Barkhausen noise analysis. We found that compactions prepared with smoothed powder particles exhibit a lower value of coercivity (4.80 A/m), higher initial (10,850) and maximum relative permeability (27,700), and low-frequency core losses (1.54 J/m3) in comparison with compactions prepared with non-smoothed particles.

4.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36077208

RESUMEN

Aminopeptidase N (APN), also known as CD13 antigen or membrane alanyl aminopeptidase, belongs to the M1 family of the MA clan of zinc metallopeptidases. In cancer cells, the inhibition of aminopeptidases including APN causes the phenomenon termed the amino acid deprivation response (AADR), a stress response characterized by the upregulation of amino acid transporters and synthetic enzymes and activation of stress-related pathways such as nuclear factor kB (NFkB) and other pro-apoptotic regulators, which leads to cancer cell death by apoptosis. Recently, APN inhibition has been shown to augment DR4-induced tumor cell death and thus overcome resistance to cancer treatment with DR4-ligand TRAIL, which is available as a recombinant soluble form dulanermin. This implies that APN inhibitors could serve as potential weapons for overcoming cancer treatment resistance. In this study, a series of basically substituted acetamidophenones and the semicarbazones and thiosemicarbazones derived from them were prepared, for which APN inhibitory activity was determined. In addition, a selective anti-proliferative activity against cancer cells expressing APN was demonstrated. Our semicarbazones and thiosemicarbazones are the first compounds of these structural types of Schiff bases that were reported to inhibit not only a zinc-dependent aminopeptidase of the M1 family but also a metalloenzyme.


Asunto(s)
Neoplasias , Semicarbazonas , Tiosemicarbazonas , Aminopeptidasas , Antígenos CD13/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Zinc/farmacología
5.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35890135

RESUMEN

The superimposition of the X-ray complexes of cyclohexanediones (i.e., TUB015), described by our research group, and nocodazole, within the colchicine binding site of tubulin provided an almost perfect overlap of both ligands. This structural information led us to propose hybrids of TUB015 and nocodazole using a salicylanilide core structure. Interestingly, salicylanilides, such as niclosamide, are well-established signal transducers and activators of transcription (STAT3) inhibitors with anticancer properties. Thus, different compounds with this new scaffold have been synthesized with the aim to identify compounds inhibiting tubulin polymerization and/or STAT3 signaling. As a result, we have identified new salicylanilides (6 and 16) that showed significant antiproliferative activity against a panel of cancer cells. Both compounds were able to reduce the levels of p-STAT3Tyr705 without affecting the total expression of STAT3. While compound 6 inhibited tubulin polymerization and arrested the cell cycle of DU145 cells at G2/M, similar to TUB015, compound 16 showed a more potent effect on inhibiting STAT3 phosphorylation and arrested the cell cycle at G1/G0, similar to niclosamide. In both cases, no toxicity towards PBMC cells was detected. Thus, the salicylanilides described here represent a new class of antiproliferative agents affecting tubulin polymerization and/or STAT3 phosphorylation.

6.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35745634

RESUMEN

Pattern 1-hydroxy-N-(2,4,5-trichlorophenyl)-2-naphthamide and the thirteen original carbamates derived from it were prepared and characterized. All the compounds were tested against Staphylococcus aureus ATCC 29213 as a reference and quality control strain and in addition against three clinical isolates of methicillin-resistant S. aureus (MRSA). Moreover, the compounds were evaluated against Enterococcus faecalis ATCC 29212, and preliminary in vitro cytotoxicity of the compounds was assessed using the human monocytic leukemia cell line (THP-1). The lipophilicity of the prepared compounds was experimentally determined and correlated with biological activity. While pattern anilide had no antibacterial activity, the prepared carbamates demonstrated high antistaphylococcal activity comparable to the used standards (ampicillin and ciprofloxacin), which unfortunately were ineffective against E. feacalis. 2-[(2,4,5-Trichlorophenyl)carba- moyl]naphthalen-1-yl ethylcarbamate (2) and 2-[(2,4,5-trichlorophenyl)carbamoyl]naphthalen-1-yl butylcarbamate (4) expressed the nanomolar minimum inhibitory concentrations (MICs 0.018−0.064 µM) against S. aureus and at least two other MRSA isolates. Microbicidal effects based on the minimum bactericidal concentrations (MBCs) against all the tested staphylococci were found for nine carbamates, while 2-[(2,4,5-trichlorophenyl)carbamoyl]naphthalen-1-yl heptylcarbamate (7) and 2-[(2,4,5-trichlorophenyl)carbamoyl]naphthalen-1-yl (4-phenylbutyl)carbamate (14) demonstrated MBCs in the range of 0.124−0.461 µM. The selectivity index (SI) for most investigated carbamates was >20 and for some derivatives even >100. The performed tests did not show an effect on the damage to the bacterial membrane, while the compounds were able to inhibit the respiratory chain of S. aureus.

7.
Materials (Basel) ; 14(22)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34832292

RESUMEN

Manufacturing the magnetic cores in electrical machines impacts the magnetic performance of the electrical steel by inducing stresses near the cutting edge. In this paper, energy loss behaviour in non-oriented electrical steels punched with different cutting clearances before and after annealing is investigated. An experimental shear cutting tool was employed to punch the ring-shaped parts from electrical steels in a finished state with four different values of cutting clearance corresponding to 1%, 3%, 5%, and 7% of the sheet thickness. The effect of cutting clearance on the magnetic losses is derived and analysed by the statistical theory of losses and associated loss separation concept including the analysis of movable magnetic objects. In this framework, this paper assesses the combined effect of cutting clearance, frequency, and heat treatment on the hysteresis loops and iron losses in non-oriented FeSi electrical steels. Measurements have been performed from quasi-static to 400 Hz at peak induction Bp = 1.0 T. Both states before and after heat treatment have been considered. The excess loss is observed as the most sensitive loss component to cutting clearance and its magneto-structural correlation is quantified.

8.
Bioorg Chem ; 111: 104797, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33901796

RESUMEN

Prenylated or geranylated flavonoids have been studied for their promising antiproliferative and cytotoxic activities. Twelve natural geranylated flavonoids (1-12) were isolated from the fruit of Paulownia tomentosa Steud. Their structures were elucidated using UV and IR spectroscopy, mass spectrometry, and 1D and 2D NMR spectroscopy. The absolute configurations were determined using NMR and circular dichroism. Seven of the compounds were characterized as new geranylated derivatives isolated from a natural source for the first time, namely 3'-O-methyl-5'-hydroxyisodiplacone (3), paulodiplacone A (5), tomentone II (6), tomentone B (7), tomentodiplacone P (8), paulodiplacone B (9), and tomentoflavone A (12). After 24 h of incubation at concentrations in the range 1-30 µM, the isolated compounds were tested for their antiproliferative and cytotoxic potentials against the human monocytic leukaemia cell line THP-1, using WST-1 and LDH assays, respectively. Almost all of the test compounds induced a concentration-dependent reduction in the metabolic activity of THP-1 cells and a concentration-dependent reduction in the cell viability. Diplacone (1) was the most potent antiproliferative and cytotoxic agent (IC50 9.31 ± 0.72 µM, LC50 18.01 ± 1.19 µM). 3'-O-Methyl-5'-hydroxydiplacone (2) showed relatively strong antiproliferative effect (IC50 12.61 ± 0.90 µM) and weaker cytotoxic activity (LC50 > 30 µM), indicating that it may serve as a potential lead compound for further testing. The structure-activity relationship for the 12 isolated compounds is discussed.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Flavonoides/farmacología , Frutas/química , Magnoliopsida/química , Extractos Vegetales/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Flavonoides/química , Flavonoides/aislamiento & purificación , Humanos , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Relación Estructura-Actividad , Células Tumorales Cultivadas
9.
Int J Mol Sci ; 21(10)2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32408543

RESUMEN

Ring-substituted 1-hydroxynaphthalene-2-carboxanilides were previously investigated for their antimycobacterial properties. In our study, we have shown their antiproliferative and cell death-inducing effects in cancer cell lines. Cell proliferation and viability were assessed by WST-1 assay and a dye exclusion test, respectively. Cell cycle distribution, phosphatidylserine externalization, levels of reactive oxygen or nitrogen species (RONS), mitochondrial membrane depolarization, and release of cytochrome c were estimated by flow cytometry. Levels of regulatory proteins were determined by Western blotting. Our data suggest that the ability to inhibit the proliferation of THP-1 or MCF-7 cells might be referred to meta- or para-substituted derivatives with electron-withdrawing groups -F, -Br, or -CF3 at anilide moiety. This effect was accompanied by accumulation of cells in G1 phase. Compound 10 also induced apoptosis in THP-1 cells in association with a loss of mitochondrial membrane potential and production of mitochondrial superoxide. Our study provides a new insight into the action of salicylanilide derivatives, hydroxynaphthalene carboxamides, in cancer cells. Thus, their structure merits further investigation as a model moiety of new small-molecule compounds with potential anticancer properties.


Asunto(s)
Anilidas/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Naftoles/química , Anilidas/química , Antineoplásicos/química , Antineoplásicos/farmacología , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Células MCF-7 , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Estructura Molecular , Especies Reactivas de Oxígeno/metabolismo , Salicilanilidas/química , Salicilanilidas/farmacología , Relación Estructura-Actividad , Superóxidos/metabolismo , Células THP-1
10.
Cells ; 9(3)2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32178484

RESUMEN

Sulfate is present in foods, beverages, and drinking water. Its reduction and concentration in the gut depend on the intestinal microbiome activity, especially sulfate-reducing bacteria (SRB), which can be involved in inflammatory bowel disease (IBD). Assimilatory sulfate reduction (ASR) is present in all living organisms. In this process, sulfate is reduced to hydrogen sulfide and then included in cysteine and methionine biosynthesis. In contrast to assimilatory sulfate reduction, the dissimilatory process is typical for SRB. A terminal product of this metabolism pathway is hydrogen sulfide, which can be involved in gut inflammation and also causes problems in industries (due to corrosion effects). The aim of the review was to compare assimilatory and dissimilatory sulfate reduction (DSR). These processes occur in some species of intestinal bacteria (e.g., Escherichia and Desulfovibrio genera). The main attention was focused on the description of genes and their location in selected strains. Their coding expression of the enzymes is associated with anabolic processes in various intestinal bacteria. These analyzed recent advances can be important factors for proposing possibilities of metabolic pathway extension from hydrogen sulfide to cysteine in intestinal SRB. The switch from the DSR metabolic pathway to the ASR metabolic pathway is important since toxic sulfide is not produced as a final product.


Asunto(s)
Bacterias/patogenicidad , Microbioma Gastrointestinal/inmunología , Sulfatos/metabolismo , Humanos , Redes y Vías Metabólicas
11.
Antibiotics (Basel) ; 9(2)2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041117

RESUMEN

1-[2-[({[2-/3-(Alkoxy)phenyl]amino}carbonyl)oxy]-3-(dipropylammonio)propyl]pyrrolidinium/azepan- ium oxalates or dichlorides (alkoxy = butoxy to heptyloxy) were recently described as very promising antimycobacterial agents. These compounds were tested in vitro against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212 (reference and control strains), three methicillin-resistant isolates of S. aureus, and three isolates of vancomycin-resistant E. faecalis. 1-[3-(Dipropylammonio)-2-({[3-(pentyloxy-/hexyloxy-/heptyloxy)phenyl]carbamoyl}oxy)propyl]pyrrolidinium dichlorides showed high activity against staphylococci and enterococci comparable with or higher than that of used controls (clinically used antibiotics and antiseptics). The screening of the cytotoxicity of the compounds as well as the used controls was performed using human monocytic leukemia cells. IC50 values of the most effective compounds ranged from ca. 3.5 to 6.3 µM, thus, it can be stated that the antimicrobial effect is closely connected with their cytotoxicity. The antibacterial activity is based on the surface activity of the compounds that are influenced by the length of their alkoxy side chain, the size of the azacyclic system, and hydro-lipophilic properties, as proven by in vitro experiments and chemometric principal component analyses. Synergistic studies showed the increased activity of oxacillin, gentamicin, and vancomycin, which could be explained by the direct activity of the compounds against the bacterial cell wall. All these compounds demonstrate excellent antibiofilm activity, when they inhibit and disrupt the biofilm of S. aureus in concentrations close to minimum inhibitory concentrations against planktonic cells. Expected interactions of the compounds with the cytoplasmic membrane are proven by in vitro crystal violet uptake assays.

12.
Molecules ; 24(16)2019 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-31426567

RESUMEN

A series of twenty-six methoxylated and methylated N-aryl-1-hydroxynaphthalene- 2-carboxanilides was prepared and characterized as potential anti-invasive agents. The molecular structure of N-(2,5-dimethylphenyl)-1-hydroxynaphthalene-2-carboxamide as a model compound was determined by single-crystal X-ray diffraction. All the analysed compounds were tested against the reference strain Staphylococcus aureus and three clinical isolates of methicillin-resistant S. aureus as well as against Mycobacterium tuberculosis and M. kansasii. In addition, the inhibitory profile of photosynthetic electron transport in spinach (Spinacia oleracea L.) chloroplasts was specified. In vitro cytotoxicity of the most effective compounds was tested on the human monocytic leukaemia THP-1 cell line. The activities of N-(3,5-dimethylphenyl)-, N-(3-fluoro-5-methoxy-phenyl)- and N-(3,5-dimethoxyphenyl)-1-hydroxynaphthalene-2-carbox- amide were comparable with or even better than the commonly used standards ampicillin and isoniazid. All promising compounds did not show any cytotoxic effect at the concentration >30 µM. Moreover, an in silico evaluation of clogP features was performed for the entire set of the carboxamides using a range of software lipophilicity predictors, and cross-comparison with the experimentally determined lipophilicity (log k), in consensus lipophilicity estimation, was conducted as well. Principal component analysis was employed to illustrate noticeable variations with respect to the molecular lipophilicity (theoretical/experimental) and rule-of-five violations. Additionally, ligand-oriented studies for the assessment of the three-dimensional quantitative structure-activity relationship profile were carried out with the comparative molecular surface analysis to determine electron and/or steric factors that potentially contribute to the biological activities of the investigated compounds.


Asunto(s)
Anilidas/farmacología , Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Mycobacterium kansasii/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Naftoles/farmacología , Ampicilina/farmacología , Anilidas/síntesis química , Anilidas/química , Antibacterianos/síntesis química , Antibacterianos/química , Cloroplastos/efectos de los fármacos , Cloroplastos/fisiología , Transporte de Electrón/efectos de los fármacos , Humanos , Isoniazida/farmacología , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Metilación , Pruebas de Sensibilidad Microbiana , Mycobacterium kansasii/crecimiento & desarrollo , Mycobacterium tuberculosis/crecimiento & desarrollo , Naftoles/síntesis química , Naftoles/química , Fotosíntesis/efectos de los fármacos , Análisis de Componente Principal , Spinacia oleracea/química , Spinacia oleracea/efectos de los fármacos , Spinacia oleracea/metabolismo , Relación Estructura-Actividad , Células THP-1
13.
Materials (Basel) ; 12(13)2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31288446

RESUMEN

Currently, the non-oriented (NO) iron-silicon steels are extensively used as the core materials in various electrical devises due to excellent combination of their mechanical and soft magnetic properties. The present study introduces a fairly innovative technological approach applicable for fully finished NO electrical steel before punching the laminations. It is based on specific mechanical processing by bending and rolling in combination with subsequent annealing under dynamic heating conditions. It has been revealed that the proposed unconventional treatment clearly led to effective improvement of the steel magnetic properties thanks to its beneficial effects involving additional grain growth with appropriate crystallographic orientation and residual stress relief. The philosophy of the proposed processing was based on employing the phenomena of selective grain growth by strain-induced grain boundary migration and a steep temperature gradient through the cross-section of heat treated specimens at dynamic heating conditions. The stored deformation energy necessary for the grain growth was provided by plastic deformation induced within the studied specimens during the bending and rolling process. The magnetic measurements clearly show that the specimens treated according to our approach exhibited more than 17% decrease in watt losses in comparison with the specimens treated by conventional heat treatment leading only to stress relief without additional grain growth.

14.
J Clin Med ; 8(7)2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31330956

RESUMEN

The small-large intestine axis in hydrogen sulfide accumulation and testing of sulfate and lactate in the gut-gut axis of the intestinal environment has not been well described. Sulfate reducing bacteria (SRB) of the Desulfovibrio genus reduce sulfate to hydrogen sulfide and can be involved in ulcerative colitis development. The background of the research was to find correlations between hydrogen sulfide production under the effect of an electron acceptor (sulfate) and donor (lactate) at different concentrations and Desulfovibrio piger Vib-7 growth, as well as their dissimilatory sulfate reduction in the intestinal small-large intestinal environment. METHODS: Microbiological, biochemical, and biophysical methods, and statistical processing of the results (principal component and cross-correlation analyses) were used. RESULTS: D. piger Vib-7 showed increased intensity of bacterial growth and hydrogen sulfide production under the following concentrations of sulfate and lactate: 17.4 mM and 35.6 mM, respectively. The study showed in what kind of intestinal environment D. piger Vib-7 grows at the highest level and produces the highest amount of hydrogen sulfide. CONCLUSIONS: The optimum intestinal environment of D. piger Vib-7 can serve as a good indicator of the occurrence of inflammatory bowel diseases; meaning that these findings can be broadly used in medicine practice dealing with the monitoring and diagnosis of intestinal ailments.

15.
Ceska Slov Farm ; 68(2): 48-68, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31331175

RESUMEN

This review deals with cytotoxic and antiproliferative activity of fifty seven prenylated phenols isolated from Morus alba. Prenyl side chain, which can be variously modified, increases lipophilicity of the substances, thereby improving their penetration through biological membranes and thus results in an increased bioavailability. The objective was to describe the relationship between structure of the prenylated phenols and their cytotoxic effect and to clarify various mechanisms by which cytotoxic prenylated phenols induce apoptosis. The conclusions showed that the cytotoxicity of the substances increases with increasing number of the prenyl side chains and ketal groups. Conversely, modification of the prenyl side chain, such as hydroxylation, reduces cytotoxicity. The cytotoxic activity is also influenced by the presence of prenyl and hydroxyl groups at specific positions.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Citotoxinas/farmacología , Morus/química , Fenoles/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Citotoxinas/aislamiento & purificación , Estructura Molecular , Fenoles/aislamiento & purificación , Prenilación
16.
Int J Mol Sci ; 19(8)2018 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-30087309

RESUMEN

: A series of sixteen ring-substituted N-arylcinnamamides was prepared and characterized. Primary in vitro screening of all the synthesized compounds was performed against Staphylococcus aureus, three methicillin-resistant S. aureus strains, Mycobacterium tuberculosis H37Ra, Fusarium avenaceum, and Bipolaris sorokiniana. Several of the tested compounds showed antistaphylococcal, antitubercular, and antifungal activities comparable with or higher than those of ampicillin, isoniazid, and benomyl. (2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-phenylprop-2-enamide and (2E)-3-phenyl-N-[3-(trifluoromethyl)phenyl]prop-2-enamide showed the highest activities (MICs = 22.27 and 27.47 µM, respectively) against all four staphylococcal strains and against M.tuberculosis. These compounds showed an activity against biofilm formation of S.aureus ATCC 29213 in concentrations close to MICs and an ability to increase the activity of clinically used antibiotics with different mechanisms of action (vancomycin, ciprofloxacin, and tetracycline). In time-kill studies, a decrease of CFU/mL of >99% after 8 h from the beginning of incubation was observed. (2E)-N-(3,5-Dichlorophenyl)- and (2E)-N-(3,4-dichlorophenyl)-3-phenylprop-2-enamide had a MIC = 27.38 µM against M. tuberculosis, while a significant decrease (22.65%) of mycobacterial cell metabolism determined by the MTT assay was observed for the 3,5-dichlorophenyl derivative. (2E)-N-(3-Fluorophenyl)- and (2E)-N-(3-methylphenyl)-3-phenylprop-2-enamide exhibited MICs = 16.58 and 33.71 µM, respectively, against B. sorokiniana. The screening of the cytotoxicity of the most effective antimicrobial compounds was performed using THP-1 cells, and these chosen compounds did not shown any significant lethal effect. The compounds were also evaluated for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. (2E)-N-(3,5-dichlorophenyl)-3-phenylprop-2-enamide (IC50 = 5.1 µM) was the most active PET inhibitor. Compounds with fungicide potency did not show any in vivo toxicity against Nicotiana tabacum var. Samsun. The structure⁻activity relationships are discussed.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Cinamatos/química , Cinamatos/farmacología , Antibacterianos/síntesis química , Antifúngicos/síntesis química , Antifúngicos/química , Antifúngicos/farmacología , Antituberculosos/síntesis química , Antituberculosos/química , Antituberculosos/farmacología , Biopelículas/efectos de los fármacos , Técnicas de Química Sintética , Cinamatos/síntesis química , Fusarium/efectos de los fármacos , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/fisiología , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/fisiología , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Tuberculosis/tratamiento farmacológico
17.
Bioorg Med Chem Lett ; 28(12): 2184-2188, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29773506

RESUMEN

A series of 13 salicylamide derivatives was assessed for antibacterial activity against three isolates of vancomycin-resistant Enterococcus faecalis (VRE) and Enterococcus faecalis ATCC 29212 as a quality standard. The minimum inhibitory concentration was determined by the broth microdilution method with subsequent subcultivation of aliquots to assess minimum bactericidal concentration. The growth kinetics was established by the time-kill assay. Ampicillin, ciprofloxacin, tetracycline and vancomycin were used as the reference antibacterial drugs. Three of the investigated compounds showed strong bacteriostatic activity against VRE (0.199-25 µM) comparable to or more potent than ampicillin and ciprofloxacin. In addition, these compounds were tested for synergistic effect with vancomycin, ciprofloxacin and tetracycline, while 5-chloro-2-hydroxy-N-[4-(trifluoromethyl)phenyl]benzamide showed the highest potency as well as synergistic activity with vancomycin against VRE 368. Screening of the cytotoxicity of the most effective compounds was performed using human monocytic leukemia THP-1 cells, and based on LD50 values, it can be stated that the compounds have insignificant toxicity against human cells.


Asunto(s)
Antibacterianos/farmacología , Enterococcus faecalis/efectos de los fármacos , Enterococos Resistentes a la Vancomicina/efectos de los fármacos , Vancomicina/farmacología , Antibacterianos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Vancomicina/química
18.
Open Life Sci ; 13: 481-488, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33817117

RESUMEN

Intestinal sulfate-reducing bacteria are often isolated from patients with inflammatory bowel disease, including ulcerative colitis, and can be involved in the development of gut inflammation. A comparison of the metabolism of intestinal sulfate-reducing bacteria isolated from individuals with colitis and healthy controls using statistical analysis has never been studied and described before. The aim of our research was to evaluate the parameters of dissimilatory sulfate reduction in Desulfovibrio species that were isolated from the feces of healthy objects and individuals with colitis. Principal component analysis indicates that the strains that were isolated from individuals with colitis grouped in the same cluster by biomass accumulation and sulfide production, same as the strains isolated from healthy individuals. Sulfate and lactate consumption measured over time showed negative correlation (Pearson correlations, p<0.01), healthy: -0.760; colitis: -0.770; healthy: -0.828; colitis: -0.847, respectively. The calculated linear regression (R2) was lower in biomass accumulation and hydrogen sulfide production, 0.531; 0.625 respectively. Thus, biomass accumulation and sulfide production, together with measured kinetic parameters play an important factor in bowel inflammation, including ulcerative colitis. Additionally, acetate production can also synergize with H2S, while sulfate consumption and lactate oxidation likely represent minor factors in bowel disease.

19.
Molecules ; 22(12)2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29189762

RESUMEN

Novel 1-(2-{3-/4-[(alkoxycarbonyl)amino]phenyl}-2-hydroxyethyl)-4-(2-fluorophenyl)-piperazin-1-ium chlorides (alkoxy = methoxy to butoxy; 8a-h) have been designed and synthesized through multistep reactions as a part of on-going research programme focused on finding new antimycobacterials. Lipophilic properties of these compounds were estimated by RP-HPLC using methanol/water mobile phases with a various volume fraction of the organic modifier. The log kw values, which were extrapolated from intercepts of a linear relationship between the logarithm of a retention factor k (log k) and volume fraction of a mobile phase modifier (ϕM), varied from 2.113 (compound 8e) to 2.930 (compound 8h) and indicated relatively high lipophilicity of these salts. Electronic properties of the molecules 8a-h were investigated by evaluation of their UV/Vis spectra. In a next phase of the research, the compounds 8a-h were in vitro screened against M. tuberculosis CNCTC My 331/88 (identical with H37Rv and ATCC 2794), M. kansasii CNCTC My 235/80 (identical with ATCC 12478), a M. kansasii 6 509/96 clinical isolate, M. avium CNCTC My 330/80 (identical with ATCC 25291) and M. avium intracellulare ATCC 13950, respectively, as well as against M. kansasii CIT11/06, M. avium subsp. paratuberculosis CIT03 and M. avium hominissuis CIT10/08 clinical isolates using isoniazid, ethambutol, ofloxacin, ciprofloxacin or pyrazinamide as reference drugs. The tested compounds 8a-h were found to be the most promising against M. tuberculosis; a MIC = 8 µM was observed for the most effective 1-(2-{4-[(butoxycarbonyl)amino]phen-ylphenyl}-2-hydroxyethyl)-4-(2-fluorophenyl)piperazin-1-ium chloride (8h). In addition, all of them showed low (insignificant) in vitro toxicity against a human monocytic leukemia THP-1 cell line, as observed LD50 values > 30 µM indicated. The structure-antimycobacterial activity relationships of the analyzed 8a-h series are also discussed.


Asunto(s)
Antituberculosos/síntesis química , Antituberculosos/farmacología , Piperazinas/síntesis química , Piperazinas/farmacología , Antituberculosos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Piperazinas/química , Análisis Espectral , Relación Estructura-Actividad
20.
Molecules ; 22(11)2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29135926

RESUMEN

Series of twenty-five benzyl (2S)-2-(arylcarbamoyl)pyrrolidine-1-carboxylates was prepared and completely characterized. All the compounds were tested for their in vitro ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and the selectivity of compounds to individual cholinesterases was determined. Screening of the cytotoxicity of all the compounds was performed using a human monocytic leukaemia THP-1 cell line, and the compounds demonstrated insignificant toxicity. All the compounds showed rather moderate inhibitory effect against AChE; benzyl (2S)-2-[(2-chlorophenyl)carbamoyl]pyrrolidine-1-carboxylate (IC50 = 46.35 µM) was the most potent agent. On the other hand, benzyl (2S)-2-[(4-bromophenyl)-] and benzyl (2S)-2-[(2-bromophenyl)carbamoyl]pyrrolidine-1-carboxylates expressed anti-BChE activity (IC50 = 28.21 and 27.38 µM, respectively) comparable with that of rivastigmine. The ortho-brominated compound as well as benzyl (2S)-2-[(2-hydroxyphenyl)carbamoyl]pyrrolidine-1-carboxylate demonstrated greater selectivity to BChE. The in silico characterization of the structure-inhibitory potency for the set of proline-based carbamates considering electronic, steric and lipophilic properties was provided using comparative molecular surface analysis (CoMSA) and principal component analysis (PCA). Moreover, the systematic space inspection with splitting data into the training/test subset was performed to monitor the statistical estimators performance in the effort to map the probability-guided pharmacophore pattern. The comprehensive screening of the AChE/BChE profile revealed potentially relevant structural and physicochemical features that might be essential for mapping of the carbamates inhibition efficiency indicating qualitative variations exerted on the reaction site by the substituent in the 3'-/4'-position of the phenyl ring. In addition, the investigation was completed by a molecular docking study of recombinant human AChE.


Asunto(s)
Carbamatos/química , Carbamatos/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Prolina , Acetilcolinesterasa/química , Sitios de Unión , Butirilcolinesterasa/química , Carbamatos/síntesis química , Dominio Catalítico , Inhibidores de la Colinesterasa/síntesis química , Conformación Molecular , Simulación del Acoplamiento Molecular , Prolina/química , Unión Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...